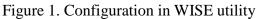
Advantech AE Technical Share Document

Date	2019/1/17	SR#	1-3008561741	
Category	■FAQ □SOP	Related OS	N/A	
Abstract	WISE-40XX, How to use scaling function and physical scaling function?			
Kouwond	WISE, Low scaling value, High scaling value, Physical Min Scaling Value,			
Keyword	Physical Max Scaling Value			
Related	WISE-40XX series			
Product	WISE-40AA series			

Problem Description:

This documentation explains the detail information about the scaling function of WISE AI module.

When using the AI with different types of sensor, the scaling function can help to convert the raw data into meaningful engineer unit so that HMI (Human Machine Interface) or database can read these data directly to enhance computational time complexity.


Brief Solution - Step by Step:

The scaling function can be found in the configuration of analog input of WISE utility. The scaling setting explanation can be found in "System Configuration" section in WISE-4000 series user manual.

Scenario

Here, WISE-4012 is used for demonstration. Scenario is that mapping $0 \sim 50^{\circ}$ C to $0.5 \sim 3V_{DC}$. The setting is shown as in figure 1.

Common	Settings	
Channel	0 .	
Tag Name	W4012_CC0012-AI0	
Range	0 ~ 10 V •	
Channel Mask	8 Enabled/Disabled	
Refresh	C Refresh	
Low Scaling Value	0.5	v
High Scaling Value	3	v
a second second second second second		
Physical Min Scaling Value	0	
Physical Min Scaling Value Physical Max Scaling Value	0	
Physical Max Scaling Value		

Experiment

Use power supply to supply $2V_{DC}$ to WISE-4012 channel 0, which is set as AI mode.

In "Status", as shown in figure 2, column Value[Eg] shows current voltage received from power supply, column Value[Hex] and Value[Dec] show corresponding raw data in Modbus address, which is shown in figure 3 and 4. User can check these address location from "I/O Modbus Mapping Table" section in user manual.

User can calculate by equation (1) to transform raw data to human readable data format. For

example, $\frac{13052}{65535} * 10 + 0 = 1.99$.

Range	Value[Eg]	Val	ue[Hex]	Value[Dec]
0 ~ 10 V	1.9916 V	32F	c	13052
40001	0		Dood	
40001	0		Read	
40001 40002 40003	0 1 2	A12/51 -	Read	
40002	0 1 2 3	Al Value		

Figure 3. Modbus AI raw data correspond address.

ModScan32 - ModSca1 File Connection Setup View Window Help Connection Setup Size Control
ModSca1 Device Id: 1 Address: 0001
40001: <13052> For Help, press F1

Channel 0~1

Figure 4. Modbus AI raw data.

 $\frac{\text{Value[Dec]}}{65535} \times \text{ inputRange + offset = Value[Eg]}$ (1)

After Low/High scaling value, data is registered in different Modbus address, and will not display on utility. Different WISE module has different corresponding Modbus address, which user

can check in user manual as in figure 5. The extracted data is shown in figure 6 and can be transformed into human readable value by formula (1) as well, $\frac{39085}{65535} * 2.5 + 0.5 = 1.99$.

40195	Average Channel 0~3		Read	
40194	3	After Scaling	Read	
40193	2	AI Value	Read	
40192	1		Read	
40191	0		Read	

Figure 5. Al	r 1	C.	1		1.	3 / 11	11
$H_1 \alpha_1 r_0 \uparrow \Lambda$	110110	ottor	cooling in	corroci	nonding	Modbug	addrage
Figure J. A	i vaiue	anci	scanng m	COLLES	DOMAINS	wioubus	auuress.
			5 • • • • • • • • • • • • • • • • • • •	•••••		1.10 00 000	

na ModSca1 Address: 0191 Length: 1	Device Id: 1 MODBUS Point Type 03: HOLDING REGISTER 💌
.0191: <39085>	

Figure 6. AI value after scaling.

Physical Low/High scaling value, which will not be shown in utility, will mapping $0 \sim 50^{\circ}$ C to Low/High scaling range 0.5 ~ 3V. In this case, if supply WISE-4012 ≤ 0.5 V, data 0.000 is registered in Modbus address [40231-40232]; if supply WISE-4012 ≥ 3 V, data 50.000 is registered in these addresses.

Note that in these addresses, data format is set as IEEE 754 floating value, which is shown in figure 7 and 8.

40231~40232	0		Read
40233~40234	1	_	Read
40235~40236	2	 Physical Al Floating Value 	Read
40237~40238	3	(IEEE754)	Read
40239~40240	Average Channel 0~3	- , ,	Read

Figure 7. AI value after physical scaling corresponding Modbus address.

ModScan32 - ModScal	ModScan32 - ModSca1
ModScal	ModScal Address: 0231 Address: 0231 Length: 2 03: HOLDING REGISTER
40231: <36175> 40232: <16878> For Help, press F1	40231: 29.8190 40232: For Help, press F1
(a)	(b)

Figure 8. (a) AI decimal value after scaling. (b) AI floating value after scaling.

In figure 8 (b), the result shows that the voltage value 2V supplied by the power supply, refers to temperature 29.8190° C.

WISE-4012E is an exception. This model is a demo piece. The purpose is to let a user easy to receive the data they need. According to the user manual, the AI value is not raw data like WISE-4012, but <u>an engineering value with unit mV.</u>

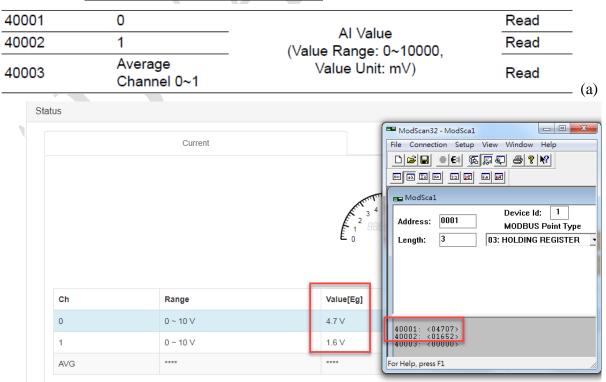


Figure 9. (a) AI value definition in user manual. (b) The value on web page and Modbus addr.

As shown in figure 9, there is a comparison between the I/O status web page and the ModScan reading results. The range of the value is 0~10000 in Modbus address. According to the equation (1),

it would be $\frac{4707}{10000} * (10 - 0) + 0 = 4.707$ V.

In figure 10 (a), the input range is set as 0-10V, and the scaling value is set as $0\sim100V$.

	C	ommon Settings	
	Cha	nnel 0 🔻	
	Tag N	w4012E_CC00B3-AI0	
	Ra	ange 0 ~ 10 V 🔹	
	Channel M	Mask Enabled/Disabled	
	Refi	resh 2 Refresh	
	Low Scaling V	alue 0 V	
	High Scaling V	/alue 100 V	
	Enable Low Al	larm Enabled/Disabled	
	Enable High Al	larm Enabled/Disabled	
		(a)	
40191	0		Read
40192	1	AI Value	Read
40193	Average Channel 0~1	After Scaling	Read
		(b)	

1	p View Window Help	
Hength: 3	Device Id: 1 MODBUS Point Type 03: HOLDING REGISTER	
40191: <00472> 40192: <10000> 40193: <00000> For Help, press F1		

Figure 10. (a) Input range and scaling range. (b) AI value after scaling definition in user manual. (c) The result of Modbus address.

As shown in figure 10, there is a result of after scaling value of AI channel. The range of the value is still within 0~10000 in Modbus address. According to the equation (1), it would be $\frac{472}{10000} * (100 - 0) + 0 = 4.72V.$