

 Page 1

Advantech AE Technical Share Document
Date 2016/8/15 SR# 1-2533309631

Category ■ FAQ □ SOP Related OS Windows / Linux

Abstract Necessary Programming Changes as Advancing to Advantech DAQNavi 4.0

Keyword Software upgrade, DAQNavi 4.0, DAQNavi SDK

Related Product

PCI-1706, PCI-1710U/HGU/UL, PCI-1711U/UL, PCI-1712, PCI-1712L, PCI-1713U,

PCI-1714U/UL, PCI-1715U, PCI-1716, PCI-1718HDU/GU, PCI-1720U, PCI-1721, PCI-1723,

PCI-1724U, PCI-1727U, PCI-1730U,PCI-1733, PCI-1734, PCI-1735U, PCI-1737U, PCI-1739U,

PCI-1741U, PCI-1742U, PCI-1747U, PCI-1750, PCI-1751, PCI-1752U, PCI-1753, PCI-1754,

PCI-1756, PCI-1758UDI, PCI-1758UDIO, PCI-1758UDO, PCI-1760U, PCI-1761, PCI-1762,

PCI-1780U, PCI-1784U, PCIE-1730, PCIE-1751, PCIE-1752, PCIE-1753, PCIE-1754,

PCIE-1756, PCIE-1760, PCIE-1802, PCIE-1810, PCIE-1816/H, PCIE-1840, PCM-3718H,

PCM-3718HO, PCM-3724, PCM-3725, PCM-3730, PCM-3730I, PCM-3753I, PCM-3761I,

PCM-3810I, PCM-3813I, PCM-27D24DI, USB-4702, USB-4704, USB-4711A, USB-4716,

USB-4718, USB-4750, USB-4751, USB-4751L, USB-4761

The changes on SW structure had been made in DAQNavi 4.0. We’d strived as much as possible to

minimize the impact to existing users, however inevitably some of the functions will no longer be available in

the original calling way, mostly happens on the functions relating to the register level work on the boards for

example BoardID (read only), read private region…etc. The programming must be changed if those kinds of

functions had already been applied to your program. Otherwise, you’ll get errors indicating that the function

isn’t available as you run the application. This document will demonstrate what should be changed in your

programming as advancing to DAQNavi 4.0.

 Brief Solution - Step by Step:

Here we separate the situation into 3 types and list the correspondent solutions:

1. Functions in DeviceCtrlExt

Those methods and properties which are listed in class DeviceCtrlBaseExt, (made to public after SDK

revision 3.2.6.0) is direct a class under namespace Automation::BDaq and won’t be available in the original

function calling style, for example to get BoardID in DAQNavi 3.0: (we will demonstrate C++ and C# in this

document)

C++:

 int boardID = instantDiCtrl->getBoardId();

C#:

 Int boardID = instantDiCtrl.BoardId();

The followings are the functions of class DeviceCtrlBaseExt we list in bdaqctrl.h of DAQNavi 3.0:

// method

 virtual ErrorCode BDAQCALL ReadRegister(int32 startAddress, int32 length, void *data) = 0;

 virtual ErrorCode BDAQCALL WriteRegister(int32 startAddress, int32 length, void *data) = 0;

 Page 2

 virtual ErrorCode BDAQCALL ReadPrivateRegion(int32 signature, int32 length, uint8 *data) = 0;

 virtual ErrorCode BDAQCALL WritePrivateRegion(int32 signature, int32 length, uint8 *data) = 0;

 // property

 virtual ProductId BDAQCALL getProductId() = 0;

 virtual int32 BDAQCALL getBoardId() = 0;

 virtual void BDAQCALL getBoardVersion(int32 length, wchar_t *ver) = 0;

 virtual void BDAQCALL getDriverVersion(int32 length, wchar_t *ver) = 0;

 virtual void BDAQCALL getDllVersion(int32 length, wchar_t *ver) = 0;

 virtual void BDAQCALL getLocation(int32 length, wchar_t *loc) = 0;

 virtual int32 BDAQCALL getPrivateRegionLength() = 0;

 virtual int32 BDAQCALL getHotResetPreventable() = 0;

 virtual ICollection<int32>* BDAQCALL getBaseAddresses() = 0;

 virtual ICollection<int32>* BDAQCALL getInterrupts() = 0;

 virtual ICollection<TerminalBoard>* BDAQCALL getSupportedTerminalBoard() = 0;

 virtual ICollection<EventId>* BDAQCALL getSupportedEvents() = 0;

 virtual TerminalBoard BDAQCALL getTerminalBoard() = 0;

 virtual ErrorCode BDAQCALL setTerminalBoard(TerminalBoard board) = 0;

 virtual int32 BDAQCALL getLoadingTimeInit() = 0;

 virtual ErrorCode BDAQCALL setLoadingTimeInit(int32 init) = 0;

The correspondent new programming style is listed below: (get BoardID)

C++:

 DeviceCtrl * devCtrl = instantDiCtrl->getDevice();

 Int boardID = devCtrl->getBoardId();

C#:

 int boardID = instantDiCtrl.Device.BoardId;

2. Undocumented functions

Normally this is a customized solution. It’s not recommended upgrading the SDK in this situation. Please

contact your local support to find out the solution if you’d like to upgrade the SDK.

3. The program without the functions above (DeviceCtrlExt & Undocumented)

You can still use the built program without rebuilding or code revision. The program should get used to it

automatically. The old programming style would still be available but hidden so that you won’t see the 3.0

style functions be listed in the IDEs when you program your application.

 Reference:

