
WinTECH Software

Industrial Automation Suite of Applications

for the Windows O.S.

I. Introduction

 A. Purpose of this manual

 B. Software Distribution Method

 C. Basic Software License

 D. How to contact WinTECH Software

II. The Modbus Protocol

 A. Message Formatting

 B. Error Detection

 C. modbus/TCP extensions

III. Software Descriptions

 A. Application Overviews

 B. ModScan

 C. ModSim

 D. MNetSvr

 E. MNetMon

 F. Modbus Master ActiveX Control

 G. Modbus Slave ActiveX Control

IV. Individual Application User Manuals

 A. ModScan

 B. ModSim

 C. MNetSvr

 D. MNetMon

 E. Modbus Master ActiveX Control

 F. Modbus Slave ActiveX Control

 2

 3

Purpose of this manual

This manual represents a composite technical description of the applications offered by WinTECH Software

to support data acquisition and manipulation using the modbus communications protocol. Topics covered

include the distribution and licensing methods utilized to market the software as well as detailed user’s

manuals for each application.

 4

Software Distribution Method

The WinTECH Software suite of Industrial Automation products is distributed primarily via the internet.

Fully-functional demo applications are available from the following Web-Site:

http://www.win-tech.com

Each software application may be downloaded for evaluation and freely distributed among potential users

without cost or obligation. Each application is in some fashion time-limited, allowing free and unrestricted

use for a pre-defined period of time. This is usually about 3 minutes after establishing communication with

a connected modbus device. After the demo-time elapses, the software will cease to function and the

application must be restarted to continue

If the software proves useful, and a user wishes to remove the time-limit from its operation, he must

purchase an access code from WinTECH Software. For WinTECH Applications, this access code must be

entered into the initial sign-on dialog box to register the software, (one-time only). Evaluation versions of

the software are identical to commercial, (registered), versions with the exception of the access code which

removes all time-limits and other registration incentives which may be included/excluded from the

evaluation copy. Once registered, the software may no longer be distributed and must remain on a single

machine, (PC). The user must conform to the software license included with the registration access code

and protect the confidentiality of the application.

ActiveX controls are protected somewhat differently. The evaluation versions of the modbus OCX controls

allow full operation in Visual Basic Design Mode for up to 30 minutes. During this time, the user may

exercise a control without restriction. Upon purchase of the control, the user will receive two licensing files

from WinTECH Software which removes the 30-minute restriction. ActiveX controls are licensed to be

installed on one machine only to be used in a development environment. There are no additional payments

or royalty fees required to include the control in a user design to be distributed,

(run-time operation), in object form.

 5

WinTECH Software License Agreement

YOU SHOULD CAREFULLY READ THE FOLLOWING TERMS AND CONDITIONS BEFORE

USING THE ACCESS CODES SUPPLIED HEREIN. USING THE SUPPLIED ACCESS CODES

TO REGISTER A WINTECH SOFTWARE APPLICATION INDICATES YOUR ACCEPTANCE

OF THESE TERMS AND CONDITIONS. IF YOU DO NOT AGREE WITH THEM, YOU

SHOULD PROMPTLY RETURN THE ACCESS CODES TO WINTECH SOFTWARE WITHIN

FIFTEEN DAYS OF ACQUISITION AND THE REGISTRATION LICENSE FEE PAID WILL BE

REFUNDED.

WinTECH Software provides computer programs contained on diskettes and/or electronic distribution

services, (the “Applications”) and associated help files and documentation, (the “Documentation”). Each

Application requires the use of an encryption string, (the “Access Code”), to remove certain operational

restrictions contained within the Application. WinTECH Software licenses the use of the Applications,

Documentation and Access Codes according to the terms and conditions set forth herein. You assume

responsibility for the selection of the Applications to achieve your intended results, and for the installation,

use and result obtained from the Applications.

LICENSE

1. You are granted a personal, non-transferable and non-exclusive license to use one copy of the

software contained with the Application on a single personal computer and to use the

documentation and Access Code under the terms stated in this Agreement. Title and ownership

of the Applications and Documentation remain with WinTECH Software

2. You, your employees and/or agents are required to protect the confidentiality of the

Applications and Documentation. You may not distribute or otherwise make the Access Codes

available to any third party.

3. You may not assign, sublicense or transfer this license and may not decompile, reverse

engineer, modify, or copy the Application or Documentation for any purpose, except you may

copy the Application and Access Code into machine readable or printed form for backup

purposes in support of your use of the Application on a single machine.

4. The Applications, Access Codes, and Documentation are copyrighted by WinTECH Software.

You agree to respect and not to remove or conceal from view any copyright, trademark, or

confidentiality notices appearing on the Application or Documentation, and to reproduce any such

copyright, trademark or confidentiality notices on all copies of the Application and

Documentation or any portion thereof made by you as permitted hereunder.

YOU MAY NOT USE, COPY, MODIFY, OR TRANSFER THE APPLICATIONS, DOCUMENTATION, OR ACCESS

CODES IN WHOLE OR IN PART, EXCEPT AS EXPRESSLY PROVIDED FOR IN THIS LICENSE.

IF YOU TRANSFER POSSESSION OF ANY COPY OF THE ACCESS CODES TO ANOTHER PARTY, YOUR LICENSE

IS AUTOMATICALLY TERMINATED.

TERM

This license is effective until terminated. You may terminate it at any time by destroying the Applications,

Documentation and Access Codes along with all copies in any form. It will also terminate upon conditions

set forth elsewhere in this Agreement if you fail to comply with any term or condition of this Agreement.

You agree upon such termination to destroy the Applications, Documentation, and Access Codes together

with all copies in any form.

 6

LIMITED WARRANTY

During the first 90 days after delivery of the Access Codes to you, as evidenced by a copy of your receipt,

invoice or other proof of purchase, (the “Warranty Period”), WinTECH Software warrants that the

Application will perform substantially in accordance with the Documentation and that the diskettes on

which the Applications are furnished, (if supplied), are free from defects in materials and workmanship

under normal use. EXCEPT AS PROVIDED N THIS SECTION, THE APPLICATIONS AND

DOCUMENTATION ARE PROVIDED WITHOUT WARRANTY OF ANY KIND, EITHER

EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES

OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.

SOME STATES DO NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO THE ABOVE EXCLUSION MAY NOT

APPLY TO YOU. THIS WARRANTY GIVES YOU SPECIFIC LEGAL RIGHTS, AND YOU MAY HAVE OTHER RIGHTS

WHICH VARY FROM STATE TO STATE.

LIMITATION OF REMEDIES

1. WinTECH Software shall use commercially reasonable efforts to correct any failure of the

Applications of which it is given written notice by you during the Warranty Period to perform

substantially in accordance with the Documentation, provided such a failure can be recreated by

WinTECH Software in an unmodified version of the Application or, if WinTECH Software is

unable to correct such failure you may terminate the Agreement by returning the Application,

Documentation, and Access Code and the License Fee paid will be refunded.

2. WinTECH Software shall replace any diskette not meeting WinTECH Software’s “Limited

Warranty” and which is returned to WinTECH Software with a copy of your receipt, invoice, or

other proof of purchase or, if WinTECH Software is unable to deliver a replacement diskette

which is free from defects in materials or workmanship, you may terminate this Agreement by

returning the Application, Documentation and Access Code and the License Fee paid will be

refunded.

IN NO EVENT WILL WINTECH SOFTWARE BE LIABLE TO YOU FOR ANY DAMAGES, INCLUDING

ANY LOST PROFITS, LOST SAVINGS OR OTHER INCIDENTAL OR CONSEQUENTIAL DAMAGES

ARISING OUT OF THE USE OR INABILITY TO USE THE APPLICATIONS EVEN IF WINTECH

SOFTWARE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES, OR FOR ANY CLAIM BY

ANY OTHER PARTY.

SOME STATES DO NOT ALLOW THE LIMITATION OR EXCLUSION OF LIABILITY FOR INCIDENTAL

OR CONSEQUENTIAL DAMAGES SO THE ABOVE EXCLUSION MAY NOT APPLY TO YOU.

GENERAL

This Agreement will be goverened by the internal laws of the State of West Virginia.

YOU UNDERSTAND THAT YOU HAVE READ THIS AGREEMENT, UNDERSTAND IT AND

AGREE TO BE BOUND BY ITS TERMS AND CONDITIONS. YOU FURTHER AGREE THAT

IT IS THE COMPLETE AND EXCLUSIVE STATEMENT OF THE AGREEMENT BETWEEN

YOU AND WINTECH SOFTWARE WHICH SUPERSEDES ANY PROPOSAL, PRIOR OR

CONTEMPORANEOUS AGREEMENT, ORAL OR WRITTEN, AND ANY OTHER

COMMUNICATIONS BETWEEN US RELATING TO THE SUBJECT MATTER OF THIS

AGREEMENT.

 7

 How to contact WinTECH Software

The most expediant method for contacting WinTECH Software is via e-mail using the following addresses:

Sales support:

sales@win-tech.com

Technical support:

support@win-tech.com

WinTECH Software is located in the Eastern Time Zone of the United States and may be reached via phone

or fax at the following number:

(304) 645-5966

The postal address is:

WinTECH Software

P.O. Box 907

Lewisburg, WV 24901

USA

 8

 9

Modbus Message Formatting

The MODBUS protocol describes an industrial communications and distributed control system developed

by Gould-Modicon to integrate PLC’s, computers, terminals, and other monitoring, sensing, and control

devices. MODBUS is a Master/Slave communications protocol, whereby one device, (the Master), controls

all serial activity by selectively polling one or more slave devices. The protocol provides for one master

device and up to 247 slave devices on a common line. Each device is assigned an address to distinguish it

from all other connected devices.

Only the master initiates a transaction. Transactions are either a query/response type, (only a single slave is

address), or a broadcast/no response type, (all slaves are addressed). A transaction comprises a single query

and single response frame or a single broadcast frame.

Certain characteristics of the MODBUS protocol are fixed, such as the frame format, frame sequences,

handling of communications errors and exception conditions, and the functions performed.

Other characteristics are user selectable. These include a choice of transmission media, baud rate, character

parity, number of stop bits, and the transmission modes, (RTU or ASCII). The user selected parameters are

set, (hardwired or programmed), at each station. These parameters cannot be changed while the system is

running.

Modes of Transmission

The mode of transmission is the structure of the individual units of information within a message, and the

numbering system used to transmit the data. Two modes of transmission are available for use in a

MODBUS system. Both modes provide the same capabilities for communicating with PLC slaves; the

mode is selected depending on the equipment used as a MODBUS Master. One mode must be used per

MODBUS system; mixing of modes is not allowed. The modes are ASCII (American Standard Code for

Information Interchange), and RTU, (Remote Terminal Unit.) The characteristics of the two transmission

modes are defined below:

Characteristic ASCII (7-bit) RTU (8-bit)

Coding System hexadecimal (uses ASCII

printable characters (0-9, A-F)

8-bit binary

Number of bits per character:

start bits 1 1

data bits (least significant first) 7 8

parity (optional) 1 1

 (1-bit sent for even or odd parity,

no bits for no parity)

(1-bit sent for even or odd parity,

no bits for no parity)

stop bits 1 or 2 1 or 2

Error Checking LRC (Longitudinal Redundancy

Check)

CRC (Cyclical Redundancy

Check)

ASCII printable characters are easy to view when troubleshooting and this mode is suited to computer

masters programmed in a high level language, such as FORTRAN, as well as PLC masters. RTU is suited

to computer masters programmed in a machine language, as well as PLC masters.

In the RTU mode, data is sent in 8-bit binary characters. In the ASCII mode, each RTU character is first

divided into two 4-bit parts, (high order and low order), and then represented by the hexadecimal

equivalent. The ASCII characters representing the hexadecimal characters are used to construct the

 10

message. The ASCII mode uses twice as many characters as the RTU mode, but decoding handling the

ASCII data is easier. Additionally, in the RTU mode, message characters must be transmitted in a

continuous stream. In the ASCII mode, breaks of up to one second can occur between characters to allow

for a relatively slower master.

Error Detection

There are two types of errors which may occur in a communications system: transmission errors and

programming errors. The MODBUS system has specific methods for dealing with either type of error.

Communications errors usually consist of a changed bit or bits within a message. The most frequent cause

of communications errors is noise: unwanted electrical signals in a communications channel. These signals

occur because of electrical interference from machinery, damage to the communications channel, impulse

noise, (spikes), etc. Communications errors are detected by character framing, a parity check, and a

redundancy check.

When the character framing, parity, or redundancy checks detect a communications error, processing of the

message stops. A PLC slave will not act on or respond to the message. (The same occurs if a non-existent

slave address is used.)

When a communications error occurs, the message is unreliable. The PLC slave cannot know for sure if

this message was intended for it. So the CPU might be answering a message which was not its message to

begin with. It is essential to program the MODBUS Master to assume a communications error has occurred

if there is no response in a reasonable time. The length of this time depends upon the baud rate, type of

message, and scan time of the PLC slave. Once this time is determined, the master may be programmed to

automatically retransmit the message.

The MODBUS system provides several levels of error checking to assure the quality of the data

transmission. To detect multibit errors where the parity has not changed, the system uses redundancy

checks: Cyclical Redundancy Check, (CRC), for the RTU mode and Longitudinal Redundancy Check,

(LRC), for the ASCII mode.

CRC-16 Cyclic Redundancy Check

The CRC-16 error check sequence is implemented as described in the following paragraphs.

The message, (data bits only, disregarding start/stop and parity bits), is considered as one continuous binary

number whose most significant bit, (MSB), is transmitted first. The message is pre-multiplied by X**16,

(shifted left 16 bits), then divided by X**16 + X**15 + X**2 + 1 expressed as a binary number

(11000000000000101). The integer quotient digits are ignored and the 16-bit remainder (initialized to all

ones at the start to avoid the case where all zeroes being an accepted message), is appended to the message,

(MSB first), as the two CRC check bytes. The resulting message including the CRC, when divided by the

same polynomial (X**16 + X**15 + X**2 + 1), at the receiver will give a zero remainder if no errors have

occurred. (The receiving unit recalculates the CRC and compares it to the transmitted CRC). All arithmetic

is performed modulo two, (no carries). An example of the CRC-16 error check for message HEX 0207,

(address 2, function 7 or a status request to slave number 2) follows:

The device used to serialize the data for transmission will send the conventional LSB or right-most bit of

each character first. In generating the CRC, the first bit transmitted is defined as the MSB of the dividend.

For convenience then, and since there are no carries used in arithmetic, let’s assume while computing the

CRC that the MSB is on the right. To be consistent, the bit order of the generating polynomial must be

reversed. The MSB of the polynomial is dropped since it affects only the quotient and not the remainder.

This yields 1010 0000 0000 0001, (HEX A001).. Note that this reversal of the bit order will have no effect

whatever on the interpretation or the bit order of characters external to the CRC calculations.

 11

The step by step procedure to form the CRC-16 is as follows:

1. Load a 16-bit register with all 1’s.

2. Exclusive OR the first 8-bit byte with the high order byte of the 16-bit register, putting the result in

the 16-bit register.

3. Shift the 16-bit register one bit to the right.

4a. If the bit shifted out to the right is one, exclusive OR the generating polynomial 1010 0000 0000

0001 with the 16-bit register.

4b. If the bit shifted out to the right is zero; return to step 3.

5. Repeat steps 3 and 4 until 8 shifts have been performed.

6. Exclusive OR the next 8-bit byte with the 16-bit register.

7. Repeat step 3 through 6 until all bytes of the message have been exclusive OR’rd with the 16-bit

register and shifted 8 times.

8. The contents of the 16-bit register are the 2 byte CRC error check and is added to the message

most significant bits first.

 16-BIT REGISTER MSB Flag

(Exclusive OR) 1111 1111 1111 1111

02 0000 0010

 1111 1111 1111 1101

Shift 1 0111 1111 1111 1110 1

Polynomial 1010 0000 0000 0001

 1101 1111 1111 1111

Shift 2 0110 1111 1111 1111 1

Polynomial 1010 0000 0000 0001

 1100 1111 1111 1110

Shift 3 0110 0111 1111 1111 0

Shift 4 0011 0011 1111 1111 1

Polynomial 1010 0000 0000 0001

 1001 0011 1111 1110

Shift 5 0100 1001 1111 1111 0

Shift 6 0010 0100 1111 1111 1

Polynomial 1010 0000 0000 0001

 1000 0100 1111 1110

Shift 7 0100 0010 0111 1111 0

Shift 8 0010 0001 0011 1111 1

Polynomial 1010 0000 0000 0001

 1000 0001 0011 1110

07 0000 0111

 1000 0001 0011 1001

 12

Shift 1 0100 0000 1001 1100 1

Polynomial 1010 0000 0000 0001

 1110 0000 1001 1101

Shift 2 0111 0000 0100 1110 1

Polynomial 1010 0000 0000 0001

 1101 0000 0010 1111

Shift 3 0110 1000 0010 0111 1

Polynommial 1010 0000 0000 0001

 1100 1000 0010 0110

Shift 4 0110 0100 0001 0011 0

Shift 5 0011 0010 0000 1001 1

Polynomial 1010 0000 0000 0001

 1001 0010 0000 1000

Shift 6 0100 1001 0000 0100 0

Shift 7 0010 0100 1000 0010 0

Shift 8 0001 0010 0100 0001 0

 HEX 12 HEX 41

TRANSMITTED MESSAGE WITH CRC-16

(MESSAGE SHIFTED TO RIGHT TO TRANSMIT)

 12 41 07 02

0001 0010 0100 0001 0000 0111 0000 0010

 13

LRC (Longitudinal Redundancy Check)

The error check sequence for the ASCII mode is LRC. The error check is an 8-bit binary number

represented and transmitted as two ASCII hexadecimal (hex) characters. The error check is produced by

converting the hex characters to binary, adding the binary characters without wraparound carry, and two’s

complementing the result. At the received end the LRC is recalculated and compared to the sent LRC. The

colon, CR, LF, and any imbedded non-ASCII hex characters are ignored in calculating the LRC.

Address 02 0000 0010

Function 01 0000 0001

Start Add H.O. 00 0000 0000

Start Add L.O. 00 0000 0000

Quantity of Pts 00 0000 0000

 08 0000 1000

 Sum 0000 1011

 1’s complement 1111 0100

 +1 0000 0001

Error Check F5 2’s complement 1111 0101

 14

MODBUS Message Types

ASCII Framing

Framing in ASCII Transmission mode is accomplished by the use of the unique colon, (:), character to

indicate the beginning of frame and carriage return/line feed, (CRLF), to delineate end of frame. The line

feed character also serves as a synchronizing character which indicates that the transmitting station is ready

to receive an immediate reply.

BEGIN

FRAME

ADDRESS FUNCTION DATA ERROR

CHECK

EOF READY

TO

RECEIVE

: 2-CHAR 16-

BIT

2-CHAR 16-

BITS

N X 4-CHAR

N X 16-BITS

2-CHAR

16-BITS

CR LF

RTU Framing

Frame synchronization can be maintained in RTU transmission mode only by simulating a synchronous

message. The receiving device monitors the elapsed time between receipt of characters. If three and one-

half character times elapse without a new character or completion of the frame, then the device flushes the

frame and assumes that the next byte received will be an address.

T1,T2,T3 ADDRESS FUNCTION DATA CHECK T1,T2,T3

 8-BITS 8-BITS N X 8-BITS 16-BITS

Address Field

The address field immediately follows the beginning of frame and consists of 8-bits, (RTU), or 2 characters,

(ASCII). These bits indicate the user assigned address of the slave device that is to receive the message

sent by the attached master.

Each slave must be assigned a unique address and only the addressed slave will respond to a query that

contains its address. When the slave sends a response, the slave address informs the master which slave is

communicating. In a broadcast message, an address of 0 is used. All slaves interpret this as an instruction

to read and take action on the message, but not to issue a response message.

 15

Function Field

The Function Code field tells the addressed slave what function to perform. MODBUS function codes are

specifically designed for interacting with a PLC on the MODBUS industrial communications system. The

high order bit in this field is set by the slave device to indicate an exception condition in the response

message. If no exceptions exist, the high-order bit is maintained as zero in the response message.

The following table lists those functions supported by various WinTECH Software Applications:

CODE MEANING ACTION

01 READ COIL STATUS Obtains current status, (ON/OFF), of a

group of logic coils.

02 READ INPUT STATUS Obtains current status, (ON/OFF), of a

group of discrete inputs.

03 READ HOLDING REGISTER Obtains current binary value in one or

more holding registers.

04 READ INPUT REGISTER Obtains current binary value in one or

more input registers.

05 FORCE SINGLE COIL Force logic coil to a state of ON or

OFF.

06 PRESET SINGLE REGISTER Place a specific binary value into a

holding register.

15 WRITE MULTIPLE COILS Force a group of logic coils to a

defined state.

16 PRESET MULTIPLE REGISTERS Place specific binary values into a

group of holding registers.

Data Field

The data field contains information needed by the slave to perform the specific function or it contains data

collected by the slave in response to a query. This information may be values, address references, or limits.

For example, the function code tells the slave to read a holding register, and the data field is needed to

indicate which register to start at and how many to read. The imbedded address and data information varies

with the type and capacity of the PLC associated with the slave.

Error Check Field

This field allows the master and slave devices to check a message for errors in transmission. Sometimes,

because of electrical noise or other interference, a message may be changed slightly while its on its way

from one device to another. The error checking assures hat the slave or master does not react to messages

that have changed during transmission. This increases the safety and the efficiency of the MODBUS

system.

The error check field uses a Longitudinal Redundancy Check, (LRC), in the ASCII mode of transmission,

and a CRC-16 check in the RTU mode.

 16

Exception Responses

Programming or operation errors are those involving illegal data in a message, no response from the PLC to

its interface unit, or difficulty in communicating with a slave. These errors result in an exception response

from either the master computer software or the PLC slave, depending on the type of error. The exception

response codes are listed below. When a PLC slave detects one of these errors, it sends a response message

to the master consisting of the slave address, function code, error code, and error check fields. To indicate

that the response is a notification of an error, the high-order bit of the function code is set to one.

CODE NAME MEANING

01 ILLEGAL FUNCTION The message function received is not an allowable

action for the addressed slave.

02 ILLEGAL DATA ADDRESS The address referenced in the data field is not an

allowable address for the addressed slave device.

03 ILLEGAL DATA VALUE The value referenced in the data field is not allowable

in the addressed slave location.

04 FAILURE IN ASSOCIATED

DEVICE

The slave’s PC has failed to respond to a message or an

abortive error occurred.

05 ACKNOWLEDGE The slave PLC has accepted and is processing the long

duration program command.

06 BUSY, REJECTED

MESSAGE

The message was received without error, but the PLC is

engaged in processing a long duration program

command.

07 NAK-NEGATIVE

ACKNOWLEDGMENT

The PROGRAM function just requested could not be

performed.

 17

READ OUTPUT STATUS (FUNCTION CODE 01)

This function allows the user to obtain the ON/OFF status of logic coils used to control discrete outputs

from the addressed slave only. Broadcast mode is not supported with this function code. In addition to the

slave address and function fields, the message requires that the information field contain the initial coil

address to be read, (Starting Address), and the number of locations that will be interrogated to obtain status

data.

The addressing allows up to 2000 coils to be obtained at each request; however, the specific slave device

may have restrictions that lower the maximum quantity. The coils are numbered from zero; (coil number 1

is address 0000, coil number 2 is address 0001, etc.)

The following is an example of a message to Read Output Status Coils 20-56 from slave device number 17.

ADDR FUNC DATA

START

PT HO

DATA

START

PT LO

DATA #

OF PTS

HO

DATA #

OF PTS

LO

ERROR

CHECK

FIELD

11 01 00 13 00 25 B6

An example response to Read Output Status is shown below. The data is packed one bit for each coil. The

response includes the slave address, function code, quantity of data characters, and error checking. Data

will be packed with one bit with one bit for each coil, (1 = ON, 0 = OFF). The low order bit of the first

character contains the addressed coil, and the remainder follow. For coil quantities that are not even

multiples of eight, the last characters will be filled in with zeroes at the high end. The quantity of data

characters is always specified as the quantity of RTU characters, i.e., the number is the same whether RTU

or ASCII is used.

ADDR FUNC BYTE

COUNT

DATA

COIL

STATUS

20-27

DATA

COIL

STATUS

28-35

DATA

COIL

STATUS

36-43

DATA

COIL

STATUS

44-51

DATA

COIL

STATUS

52-56

ERROR

CHECK

FIELD

11 01 05 CD 6B B2 0E 1B D6

The status of coils 20-27 is shown as CD(HEX) = 1100 1101(Binary). Reading left to right, this shows that

coils 27,26,23,22, and 20 are all on. The other coil data bytes are decoded similarly.

 18

READ INPUT STATUS (FUNCTION CODE 02)

This function allows the user to obtain the ON/OFF status of discrete inputs in the addressed slave.

Broadcast mode is not supported. In addition to the slave address and function code fields, this message

requires that the information field contain the initial input address to be read, (Starting Address) and the

number of locations that will be interrogated to obtain the status data.

The following is an example of a message to Read Input Status Coils 10197-10218 from slave device

number 17.

ADDR FUNC DATA

START

PT HO

DATA

START

PT LO

DATA #

OF PTS

HO

DATA #

OF PTS

LO

ERROR

CHECK

FIELD

11 02 00 C4 00 16 13

An example response to Read Input Status is shown below. The data is packed one bit for each coil. The

response includes the slave address, function code, quantity of data characters, and error checking. Data

will be packed with one bit with one bit for each coil, (1 = ON, 0 = OFF). The low order bit of the first

character contains the addressed coil, and the remainder follow. For coil quantities that are not even

multiples of eight, the last characters will be filled in with zeroes at the high end. The quantity of data

characters is always specified as the quantity of RTU characters, i.e., the number is the same whether RTU

or ASCII is used.

ADDR FUNC BYTE

COUNT

DATA

DISCRETE

INPUT

10197-10204

DATA

DISCRETE

INPUT

10205-10212

DATA

DISCRETE

INPUT

10213-10218

ERROR

CHECK

FIELD

11 02 03 AC DB 35 2E LRC

The status of inputs 10197-10204 is shown as AC (HEX) = 1010 1100 (Binary). Reading left to right, this

shows that inputs 10204, 10202, 10200 and 10099 are all on. The other input data bytes are decoded

similarly.

 19

READ OUTPUT REGISTERS (FUNCTION CODE 03)

Read Output Registers allows the user to obtain the binary contents of holding registers in the addressed

slave.

These registers can store the numerical values of associated timers and counters which can be driven to

external devices.

The addressing allows up to 125 registers to be obtained at each request; however, the specified slave

device may have restrictions that lower this maximum quantity. The registers are numbered from zero,

broadcast mode is not allowed.

The following example reads registers 40108 through 40110 from slave number 17.

ADDR FUNC DATA

START

PT HO

DATA

START

PT LO

DATA #

OF REGS

HO

DATA #

OF REGS

LO

ERROR

CHECK

FIELD

11 03 00 6B 00 03 7E

The addresses slave responds with its address and the function code, followed by the information field. The

information field contains 2 bytes describing the quantity of data bytes to be returned. The contents of the

registers requested (DATA), are two bytes each, with the binary content right justified within each pair of

characters. The first byte includes the high order bits and the second, low order bits.

In the example below, the registers 40108-40110 have the decimal contents 555, 0, and 100 respectively.

ADDR FUNC BYTE

COUNT

DATA

OUTPUT

REG

H.O.

40108

DATA

OUTPUT

REG

L.O.

40108

DATA

OUTPUT

REG

H.O.

40109

DATA

OUTPUT

REG

L.O.

40109

DATA

OUTPUT

REG

H.O.

40110

DATA

OUTPUT

REG

L.O.

40110

ERROR

CHECK

FIELD

11 03 06 02 2B 00 00 00 64 55

 20

READ INPUT REGISTERS (FUNCTION CODE 04)

Function Code 04 obtains the contents of the controllers input registers. These locations receive their vales

from devices connected to the I/O structure and can only be referenced, not altered from within the

controller nor via MODBUS.

The example below requests the contents of register 30009 in slave number 17.

ADDR FUNC DATA

START

PT HO

DATA

START

PT LO

DATA #

OF REGS

HO

DATA #

OF REGS

LO

ERROR

CHECK

FIELD

11 04 00 08 00 01 E2

In the response message, the contents of register 30009 is decimal value 0.

ADDR FUNC BYTE

COUNT

DATA

INPUT

REG HO

30009

DATA

INPUT

REG LO

30009

ERROR

CHECK

FIELD

11 04 02 00 00 E9

 21

FORCE SINGLE COIL (FUNCTION CODE 05)

This message forces a single coil either On of OFF. Any coil that exists within the controller can be forced

to either state, (ON or OFF). Coils are numbered from zero (i.e. coil 1 is address 0000, coil 2 is address

0001, etc.). The data value 65,280, (FF00 HEX) will set the coil ON and the value zero will turn it off. All

other values are illegal and will not effect the coil. The use of slave address 00, (Broadcast mode), will

force all attached slaves to modify the desired coil.

The example below requests slave number 17 to turn coil number 0173 ON.

ADDR FUNC DATA

COIL

HO

DATA

COIL

LO

DATA #

ON/OFF

DATA ERROR

CHECK

FIELD

11 05 00 AC FF 00 3F

The normal response to the command request is to retransmit the message as received, after the coil state

has been altered.

ADDR FUNC DATA

COIL

HO

DATA

COIL

LO

DATA #

ON/OFF

DATA ERROR

CHECK

FIELD

11 05 00 AC FF 00 3F

 22

PRESET SINGLE REGISTER (FUNCTION CODE 06)

Function 06 allows the user to modify the contents of a holding register. Any holding register that exists

within the controller can have its contents changed by this message. The values are provided in binary up to

the maximum capacity of the controller. Unused high-order bits must be set to zero. When used with slave

address 00, all slave controllers will load the specified register with the contents specified.

ADDR FUNC DATA

REG

HO

DATA

REG

LO

DATA

VALUE

HO

DATA

VALUE

LO

ERROR

CHECK

FIELD

11 06 00 87 03 9E C1

The normal response to a preset single register request is to retransmit the query message after the register

has been altered.

ADDR FUNC DATA

REG

HO

DATA

REG

LO

DATA

VALUE

HO

DATA

VALUE

LO

ERROR

CHECK

FIELD

11 06 00 87 03 9E C1

 23

FORCE MULTIPLE COILS (FUNCTION CODE 15)

Function 15 allows the user to modify the contents of a group of consecutively addressed coils.

The following example forces 10 coils starting at address 20, (13 HEX). The two data fields,

CD = 1100 1101 and 00 = 0000 0000, indicate that coils 27, 26, 23, 22 and 20 are to be forced on.

ADDR FUN

C

H.O.

ADDR

L.O.

ADDR

QUANTITY BYTE

CNT

DATA

COIL

STATUS

DATA

COIL

STATUS

ERROR

CHECK

FIELD

11 0F 00 13 00 0A 02 CD 00 F4

The normal response to a FORCE MULTIPLE COILS request is to echo the slave address, function code,

starting address, and quantity of coils set.

ADDR FUNC H.O.

ADDR

L.O.

ADDR

QUANTITY ERROR

CHECK

FIELD

11 0F 00 13 00 0A C3

 24

PRESET MULTIPLE REGISTERS (FUNCTION CODE 16)

Holding registers existing within the controller can have their contents changed via function code 16.

Sixteen bits of data for each register is contained within the message.

ADDR FUN

C

H.O.

ADDR

L.O.

ADDR

QUANTITY BYTE

CNT

H.O.

DATA

L.O.

DATA

etc. ERROR

CHECK

FIELD

11 10 00 87 00 02 04 00 0A ??

The normal response to a PRESET MULTIPLE REGISTERS request is to echo the slave address, function

code, starting address, and quantity of registers set.

ADDR FUNC H.O.

ADDR

L.O.

ADDR

QUANTITY ERROR

CHECK

FIELD

11 10 00 87 00 02 56

 25

modbus/TCP Extensions

The Modbus Applications Programming Interface for Network Communications, (MBAP), was developed

by Modicon to allow traditional serial modbus communiactions to occur over a TCP/IP network. It

basically defines a “wrapper” around the modbus protocol to accomidate routing data packets between two

network nodes. The same master/slave messaging protocol is used, however the network aspect allows

multiple master devices to access data from the same or different slave devices connected to the network.

Using the Client/Server approach, a modbus/TCP slave device represents the server side of the

communications model, accepting and responding to queires from one or more network client master

applications.

 26

WinTECH Software Application Overviews

The WinTECH Software suite of applications for Industrial Automation was designed to provide a cost-

effective solution to interface data from modbus devices into the PC Windows environment. Without the

overhead associated with a full featured MMI, these products provide an easy to use interface to remote

devices. Primarily used for simulation and verification of the protocol, WinTECH Software applications

are inexpensive tools which should be included in every test and commissioning engineer’s arsenal. In

addition, these tools support Windows OLE, which allows quick development of testing applications via

Visual Basic for customizing operation, (such as the case for production testing).

Each application supports physical connections to modbus devices via direct serial, modem, or TCP/IP

network. Standard Win32 drivers are used through-out the designs, allowing for their efficient operation on

Windows 95/98 as well as Windows NT.

ModScan

ModScan is a modbus master application, designed to read data from one or more connected slave devices.

The original 16-bit version of the application supports both RTU and ASCII transmission modes and allows

register data to be displayed in a variety of formats including decimal, hexadecimal, and floating-point

notation. ModScan also supports custom, (user generated), modbus commands and provides a scripting

facility for automated testing of modbus slave devices.

ModScan32 is an upgraded version of ModScan which takes full advantage of the Win32 platform.

ModScan32 is a multi-document design, allowing you to open and actively scan multiple arrays of data

points from an attached slave. The same formatting and scripting features as the 16-bit version are

supported, as well as OLE Automation and direct database access via the Microsoft JET database engine.

A recent addition to ModScan32 provides basic MMI capability which allows you to generate custom

displays of modbus data using various graphical interfaces.

ModScan(16) supports direct serial connections only, while ModScan32 may be used with modems and

network connections.

ModSim

ModSim represents the slave end of the communications protocol. This application may be used to

simulate data from one or more modbus slave devices for access by a modbus master. Display of data is

comparable to ModScan, in that register data may be displayed as decimal, hex, floating-point, etc.

Available as either a 16 or 32-bit design, ModSim supports multiple direct serial connections. ModSim32

may also be configured to operate as a modbus/TCP network server application for simulation of slave data

via network connections. OLE Automation is also supported by the Win32 version.

MNetSvr

MNetSvr is a Win32 application designed to bridge serial modbus devices to a network environment. This

application operates as a modbus/TCP network server, accepting requests from atached clients, collecting

the data via a serial port, and responding via the network connection. MNetSvr supports multiple

asynchronous network connections and is fully compatible with the modbus/TCP protocol as defined by

Modicon.

 27

MNetMon

MNetMon is a Win32 Application designed to unintrusively monitor an active modbus communications

link by tapping into the RS-232 Transmit signals via two separate PC comm ports. As MNetMon

recognizes data passed between the master and slave devices, it mirrows the data points to a local database,

and makes this data accessible to other network devices operating as modbus/TCP clients. MNetMon

operates as a modbus network server application, similar to MNetSvr but without actually polling the slave

devices. MNetMon may be used with any existing RS-232 modbus communications link to seamlessly

integrate the data with a PC network without impacting the integrity of the data exchanged between the

master and slave devices.

Modbus Master ActiveX Control

The WinTECH Software Modbuss OCX is a custom control which supports drag and drop functionality

into the Visual Basic devlopment workbench. The OCX is a modbus master control, which provides access

to modbus data from your VBA application. The OCX contains a basic series of properties defining the

connection, slave adress, point type, and point addresses to scan. Data from the defined slave is

automatically collected and presented to your application as an array of data points. Multiple controls may

be utilized within the same VBA application for accessing data of different types or data from different

slave devices. The modbus master control supports direct serial, modem, or network connections.

Modbus Slave ActiveX Control

The WinTECH Software Modbus Slave OCX is a custom control which supports drag and drop

functionality into the Visual Basic devlopment workbench. This very simple slave control allows your

Visual Basic application to define an array of data points to be made instantly available to any connected

modbus master device. Providing support for direct serial or network connections, this control is the

quickest way for a developer to interface his custom data to a modbus network.

Driver DLL’s

WinTECH Software can also supply source code to support custom development of modbus designs. Both

master and slave drivers are available for the Window’s platform in either 16 or 32-bit form factors. These

drivers are the same ones used by the above applications and are available at very reasonable prices. Each

driver is written in straight ‘C’ code and comes complete with an example Windows application, (source

form), written using the Microsoft MFC. The modbus slave dlls are compatible with Visual Basic, and

provide a very easy mechanism for desiging customized solutions.

 28

 29

ModScan

Following is a concise user’s manual for the operation of ModScan32. Operation of the 16-bit version of

ModScan is similar, but is not detailed in this document.

I. Application Overview

 A. Document/View Architecture

 B. Modbus Data Definition

 C. Display Formats

 D. Connections

II. Commands

 A. File Menu

 B. Connection Menu

 C. Setup Menu

 1. Commands

 2. Display Options

 3. Extended Options

 D. View Menu

 1. Commands

 2. Config Menu

 E. Window Menu

 F. Help Menu

III. Toolbars & Status Bar

 A. Toolbar

 B. Display Selections

 C. Status Bar

IV. Testing Features

 A. Writing Data to a device

 B. Message Counters

 C. Observing Serial Traffic

 D. Capturing Data

 E. User Defined Messages

 F. Test Scripts

V. Database Operation

VI. OLE Automation

 A. Automation Routines

 B. Error Status Codes

 C. VBA Example

VII. Custom Displays of Modbus Data

 A. Simple Text

 B. Discrete Data Values

 C. Register Data Values

 D. Simple Graphical Items

 E. Bar Charts

 F. Trend Graphs

 G. Dials

 30

ModScan Overview

The ModScan application operates as a MODBUS master device in either RTU or ASCII transmission

modes. ModScan may be used to access and modify data points contained in one or more MODBUS slave

devices connected to the PC via a serial port, modem, or network. ModScan supports the standard

MODBUS message types 01-06, 15 & 16, as well as providing the ability for you to exercise special

features of a slave device by transmitting custom command strings and observing the response. ModScan is

a useful test and diagnostic tool for verifying the proper slave response to MODBUS queries as well as

being a low cost data collection tool for interfacing data into PC database and spreadsheet applications.

Document/View Architecture

ModScan utilizes the standard Windows Multiple-Document-Interface, (MDI), architecture for displaying

modbus data to the user. Each basic ModScan document represents a series, (array), of modbus data points

identified by the following parameters:

Slave Device Address Represents the physical device attached to the modbus network

Data Type Internal data representation, (i.e. input, coil, register)

Data Address Point address within the device

Length Number of points to scan/display

ModScan may also be utilized to represent different types of modbus data using customized graphical

objects as described in section VII.

Associated with each document is also a timer, which is used to periodically scan new data from the defined

slave and refresh the display. The modbus data definition is accessible from the ModScan menu or via edit

controls in the top splitter window of the document display. As new data is obtained from the slave device,

it is written to the bottom splitter window in one of several formats, depending upon your preference. The

size of each document display window is adjustable via the splitter control.

Modbus Data Definition

The upper half of each Document’s View represents the data selected for display, (and possible capture to a

historical data file). In most testing applications, the ModScan will only be connected to a single modbus

slave device, however, in a multidrop modbus network, there may be several devices accessible from a

single connection. The “Device Id” edit control allows you to specify the slave address for the source of the

data. Likewise, edit controls are available to select the point type, data address, and number of data points

to access.

Notice that the modbus protocol uses a 5-digit representation for the slave data address which infers the

point-type. For example, INPUT STATUS values are always represented in the range 10001-19999:

HOLDING REGISTERS are displayed as 40000-49999. The ModScan application uses the standard

notation for displaying data in the bottom splitter window, however the address specified in the upper

splitter address edit control assumes a 4-digit physical point address. This address, coupled with the point-

type specifier completely defines the data to be accessed in the slave device.

The upper splitter window also contains two counters which are used to tally the number of data requests

made from this document to the modbus connection and the number of valid slave responses received in

reply. A button is available within the display which resets the counters associated with this document.

 31

Display Formats

As data is received from the slave device, it is displayed to the lower splitter view of the associated

document. Any errors incurred during the exchange of information will be displayed on the first line. The

font and colors used to display the data is configurable via the View, Config menu options.

Modbus register data may be displayed in any of the following formats:

Binary Data displayed as 16 discrete values.

Decimal Ranges from -32767 to 32768

Hexadecimal 0000-ffff

Floating-Point IEEE Standard Floating Point Notation

(Requires two registers per value)

Swapped Floating

Point

Inverted Floating Point used by some processors

Double Precision

Floating Point

64-bit Floating Point Notation

Swapped Double Inverted 64-bit Float Values

Connections

ModScan may be used to obtain data from modbus slave device connected to the PC in one of three basic

physical arrangements. The most common connection is via any one of the four available PC serial COM

ports. ModScan uses the standard Win32 software drivers for communication with the COM ports, thereby

providing support for any hardware serial boards which may be installed in the Windows operating system,

(including RS-232, RS-485, etc.). You have complete control over the operating characteristics of the serial

connection by selecting the appropriate baud rate, parity, and control line, (handshaking), properties to

match the slave device(s).

In remote testing situations, the ModScan application may be used to communicate with a modbus network

over a dedicated modem connection. ModScan supports the TAPI, (telephony application interface),

standard implemented in Windows and Windows NT. If selected, the modem connection dialog allows you

to enter a phone number for dialing. Any TAPI device configured within the Windows operating system is

available for use.

ModScan allows modbus communications to occur over a TCP/IP network using the modbus/TCP protocol.

ModScan operates as a modbus/TCP client application, (modbus master), accessing data from any

connected modbus/TCP server. Several vendors now offer direct TCP/IP networking support for mobus

devices and ModScan is an excellent way to access/test these devices. You may also use one of several

available modbus to TCP/IP bridge devices which can service network requests to a connected serial port.

A bridge device operates as a network server, providing support to numerous client applications distributed

over the network and interfacing modbus requests for data to slave devices connected serially. WinTECH

Software provides such a server, (MNetSvr), as an application which runs under Windows.

It is also possible to connect via modem to a remote system utilizing the built-in networking characteristics

of Windows ‘95 & NT. To do this, you will need to configure the ModScan application to connect via a

TCP/IP connection which has been setup within Windows to automatically dial and establish a PPP

connection with another Windows machine which is connected directly to the slave device(s) you wish to

use. In this case, ModScan operates as if it were using a network card connected directly to a modbus to

TCP/IP bridge device.

ModScan Commands

 32

File Menu

The File menu offers the following commands:

New Creates a new document. Use this command to create a new document in ModScan.

Each document represents a different block of data from a modbus device.

Open Opens an existing document. Use this command to open an existing document in a new

window. You can open multiple documents at once. Use the Window menu to switch

among the multiple open documents.

Custom This command allows you to open/create a Custom Display document. Using a

customized document, you can drag & drop modbus data points from various slave

devices onto your display to be shown in a variety of graphical formats.

Close Closes an opened document. Use this command to close the active document. If the data

definition, (address, point type, etc), has changed since the document was opened,

ModScan suggests that you save changes before you close it. If you close a document

without saving, you lose all changes made since the last time you saved it. Before

closing an untitled document, ModScan displays the Save As Dialog and suggests that

you name and save the document. You can also close a document by using the Close

icon on the document's window.

Save Saves an opened document using the same file name. Use this command to save the

active document to its current name and directory. When you save a document for the

first time, ModScan displays the Save As dialog box so you can name your document.

Save As Saves an opened document to a specified file name. Use this command to save and name

the active document. ModScan displays Save As dialog box the so you can name your

document.

Print Prints a document.

Printer Setup Selects a printer and printer connection.

Exit Exits ModScan32.

 33

Connection Menu

The Connect menu offers the following commands:

Connect Attaches the ModScan application to a modbus network, enabling data collection. Use

this command to connect the ModScan application to a modbus network. A dialog box

will prompt you for information relative to the connection. You may use ModScan to

connect directly to a modbus device via one of four Windows COM ports, or via a

modem or TCP/IP network. The possible ways to connect are presented in the drop-

down list contained within the connect dialog box.

If you select a direct connection, you must specify the associated baud rate, parity and

control line selections which match your modbus devices. If a modem connection is

selected, you must supply the dialing number and if a network selection is made, you

must supply the necessary IP address for the connection.

The protocol selections button allows to specify either the modbus RTU or ASCII

transmission mode and the time-out associated with the expected slave response to a

query.

Disconnect Detaches the ModScan application from the network, freeing up resources for other

Windows applications.

Setup Menu

The Setup menu offers the following commands:

Data Definition Defines the document properties of the modbus data to be scanned. Use this

command to define the characteristics of the data to be monitored for the active

document. You may select up to 128 data points for display.

Display Options Allows the document data to be viewed in a variety of formats.

Extended Options Provides the ability to write data to a connected slave device.

Text Capture Begins collecting modbus data to a specified text file. Use this command to store

the results of each modbus query to an ASCII text file. Data is written to the

specified file, (one scan per line), in the format selected for display in the lower

splitter view, (i.e. decimal, hex, float). If an error was encountered during the

polling transaction, the error message will be logged to the file rather than the

data. There is no “wrap-around” feature for collecting data. New data is

appended to the file on each query and the file can become very large vary fast if

used with a short scan frequency.

Dbase Capture Begins collecting data into a defined database table. The ability to save modbus

data directly to a database is an optional feature of ModScan. If the feature is

unavailable, the Database Capture menu selection will be grayed out and not

accessible. If enabled, this command allows you to store the results of each query

into an active Microsoft compatible database for interfacing modbus data with

custom designs.

Capture Off Stops data collection. Use this command to stop the document from updating the

capture file.

Reset Counters Clears all modbus message status counters in all documents. Use this command to

reset the modbus message counters for all active documents.

 34

Display Options

The Display Options menu offers the following commands:

Show Data This default view configuration displays data values as obtained from the modbus

slave device. ModScan is normally configured to display modbus data points in

the lower splitter view of the associated document. Data points are displayed in

order from top to bottom, left to right. Data is displayed using the current colors

and font selection. Coil values are displayed as either <0> or <1>. Register

values may be displayed in a variety of formats according to your preferences.

Show Traffic This option allows the serial data stream to be displayed in place of the data

points. Use this command to troubleshoot the connection to a particular modbus

device. When selected, this option will display the serial data exchanged

between the ModScan application and the slave device associated with this

document. The data display splitter view will show data transmitted to the slave

device and data returned from the slave device as communications occur during

the normal polling cycle. This will help to isolate a problem with possible

misinterpretation of the modbus protocol. Data will be displayed in either

decimal or hex, depending upon the preference settings in effect for viewing the

modbus data points. Normal data collection, (if enabled), will continue.

Binary Register values are displayed as 16 discrete bits. Use this command to display the

contents of modbus registers as a group of 16 discrete values as shown below:

41000: <0001000100110100>

This example shows the HOLDING REGISTER located at address 1000 to

contain the value 1134H.

Decimal Register values are displayed in decimal format, (-32767-32768).

Hex Register Values are displayed in Hexadecimal, (0000-ffff).

Floating Point Register Values are displayed in floating point notation, (two registers are

required). Use this command to display the contents of modbus registers as

floating point values based on interpretation of two consecutive registers, (32-

bits), according to the IEEE specification. ModScan will attempt to convert the

values contained within the selected registers as the IEEE value. If the bit pattern

contained within the register set matches the criteria for a floating point number,

the value will be displayed on the lower document splitter view as a decimal

value associated with the first register address of the pair.

Swapped FP Register Values are displayed in floating point notation, (least significant register

first). Use this command to display the contents of modbus registers as floating

point values based on interpretation of two consecutive registers, (32-bits),

according to the IEEE specification. ModScan will attempt to convert the values

contained within the selected registers as the IEEE value. If the bit pattern

contained within the register set matches the criteria for a floating point number,

the value will be displayed on the lower document splitter view as a decimal

value associated with the first register address of the pair. The difference

between this option and the normal Floating Pt display option is the order of the

registers with respect to the IEEE standard.

Dbl Float Register Values are displayed in floating point notation, (four registers, (64 bits),

are required). Use this command to display the contents of modbus registers as

floating point values based on interpretation of four consecutive registers, (64-

bits), according to the IEEE specification for double-precision numbers.

 35

ModScan will attempt to convert the values contained within the selected

registers as the IEEE value. If the bit pattern contained within the register set

matches the criteria for a floating point number, the value will be displayed on

the lower document splitter view as a decimal value associated with the first

register address of the pair.

Swapped Dbl Register Values are displayed in floating point notation, (least significant register

first). Use this command to display the contents of modbus registers as floating

point values based on interpretation of four consecutive registers, (64-bits),

according to the IEEE specification for double-precision numbers.

ModScan will attempt to convert the values contained within the selected

registers as the IEEE value. If the bit pattern contained within the register set

matches the criteria for a floating point number, the value will be displayed on

the lower document splitter view as a decimal value associated with the first

register address of the pair. . The difference between this option and the normal

Floating Pt display option is the order of the registers with respect to the IEEE

standard.

Hex Addresses Displays the addresses of data points in hexadecimal notation. Use this command

to display the addresses associated with a modbus data point in hexadecimal

notation rather than decimal.

 36

Extended Options

The Setup Extended Options menu offers the following commands:

Force Coils Provides the ability to write coil values to a designated slave device. Use this

command to manually force a group of coils to a given state, (on/off). The

ability to address multiple coils in a

slave depends upon the operating characteristics of the device. ModScan uses

modbus message 15, (Force Multiple Coils), to transmit the request to the

designated slave. Selecting this menu option will initiate a dialog box which

prompts for the address of the data to write:

Entering appropriate values for the slave address, point address, and number of

coils to write initiates a second dialog which allows you to manually select the

value for each coil. Use the radio buttons to select either ON of OFF for each

coil value. The scrollbar control allows you to advance to the next series of coil

addresses:

Preset Registers Provides the ability to write register values to a designated slave device. Use this

command to force a group of holding registers to selected values. ModScan

uses modbus message 16, (Preset Registers), to write data to the designated

slave device. Selecting this menu option will initiate a dialog box which prompts

for the address of the data to write:

Entering appropriate values for the slave address, point address, and number of

registers to write initiates a second dialog which allows you to manually select

the value for each register. Use the edit controls associated with each register

address to enter its value. Values may be entered in either decimal or

hexadecimal notation, depending upon the preference selected for modbus data

display. The scrollbar control allows you to advance to the next series of

register addresses up to the maximum specified in the previous dialog:

Buttons at the right of the Preset Registers dialog allow you to configure a series

of register values and write them to a disk file for later retrieval and

downloading to a modbus slave. Pressing the To File button saves the currently

defined register values to a selected file. The From File button fills the edit

controls of the dialog with values obtained from a previously saved disk file.

User Commands Allows you to define and transmit a custom command. Use this command to

customize a command string for transmission to a designated modbus slave

device. This command is useful for observing the slave response to non-

standard modbus queries or to test its reaction to requests for data which may

not be available. The slave device should respond with the proper exception

message if a master device asks for data which is beyond its address range or

otherwise unavailable via the modbus. After transmitting the user string,

ModScan will receive characters for the entire time-out period specified for the

connection. The results will then be updated to the appropriate edit control on

the dialog box. User defined messages transmitted to a slave device will not

show up in the ModScan message counters.

Mask Write This menu selection provides support for the modbus Write-Mask function,

(command 22), which allows you to specify a bit pattern to be used in updating

the contents of a holding register.

Script Files Begins execution of a test script.

View Menu

 37

The View menu offers the following commands:

Toolbar Shows or hides the toolbar.

Status Bar Shows or hides the status bar.

Display Bar Shows or hides the format toolbar used to select the display format for

modbus registers.

Config Allows you to customize the appearance of ModScan by selecting the

colors and font used.

Config Menu

The config options supported under the View menu offers you the ability to select the colors used to display

modbus data as well as the character font.

Background Color Selects the color for the ModScan data display splitter view.

Foreground Color Selects the text color used to display data values.

Status Color Selects the color used to show the modbus status line.

Font Selects the font.

Window Menu

The Window menu offers the following commands, which enable you to arrange multiple views of multiple

documents in the application window:

Cascade Arranges windows in an overlapped fashion.

Tile Arranges windows in non-overlapped tiles.

Arrange Icons Arranges icons of closed windows.

Window 1,2... Goes to specified window.

Help Menu

The Help menu offers the following commands, which provide you assistance with this application:

Help Topics Offers you an index to topics on which you can get help.

About Displays the version number of this application.

 38

Tollbars & Status Bar
Toolbar

The toolbar is displayed across the top of the application window, below the menu bar. The toolbar

provides quick mouse access to many tools used in ModScan. The toolbar is detachable and dockable by

clicking the mouse on the toolbar background and dragging it to the desired location within the ModScan

application window.

To hide or display the Toolbar, choose Toolbar from the View menu (ALT, V, T).

Toolbar buttons, (from left to right), allow you to:

Open a new document.

Open an existing document. ModScan displays the Open dialog box, in which you can locate

and open the desired file.

Save the active document or template with its current name. If you have not named the

document, ModScan displays the Save As dialog box.

Define the characteristics of the modbus data to be displayed.

Show modbus data points in lower splitter view.

Show serial data streams in lower splitter view.

Print the active document.

Display the About Box.

Context Help.

Display Selection Toolbar

The format toolbar is displayed across the top of the application window, below the menu bar. The format

toolbar provides quick mouse access to select the format used by ModScan to display the contents of

modbus registers. The toolbar is detachable and dockable by clicking the mouse on the toolbar background

and dragging it to the desired location within the ModScan application window.

Toolbar buttons, (from left to right), allow you to:

Display registers in binary.

Display registers in decimal.

Display registers in hexadecimal.

Display registers in floating-point notation.

Display registers in floating-point notation, (interpreted as having the least significant 16-bits

in the first register).

Display registers in 64-bit double precision floating point notation.

 39

Display registers in double-precision floating point, (interpreted as having the least significant

16-bits in the first register).

Status Bar

The status bar is displayed at the bottom of the ModScan window. To display or hide the status bar, use the

Status Bar command in the View menu.

The left area of the status bar describes actions of menu items as you use the arrow keys to navigate through

menus. This area similarly shows messages that describe the actions of toolbar buttons as you depress

them, before releasing them. If after viewing the description of the toolbar button command you wish not to

execute the command, then release the mouse button while the pointer is off the toolbar button.

The right areas of the status bar indicate the message counters for all modbus message activity logged by

the various active documents.

 40

Testing Features
Writing Data

In order to write a MODBUS data point in a slave device, the communications with the device must first be

initiated by scanning a series of data points by configuring the correct addressing information and initiating

a polling cycle. Once the data is successfully displayed, double-clicking the address/value portion of the

screen will initiate a dialog box which allows the value to be changed. If the polling cycle has been

configured to represent coil addresses, double-clicking an address will initiate the Change Coil Dialog:

The Change Register Dialog Box may be initiated by configuring the display to represent register data and

double clicking on an address:

Register values may be written using binary, decimal, hexadecimal, or floating-point notation, depending on

the preference selection currently in effect.

Pressing the Update Button in either write data point dialog will initiate the appropriate MODBUS write

command, (05 or 06), during the next scheduled poll.

Message Counters

Each document maintains a counter for each query message transmitted to a modbus slave device and a

counter for each correct response returned from the addresses slave. The counters for a given document

may be reset via a button control accessible via the upper, (data definition), splitter view. A total count of

all message counters from all active documents, (including any OLE Automation client documents), is

displayed via the ModScan status bar.

Viewing Serial Traffic

Use this command to troubleshoot the connection to a particular modbus device. When selected, this option

will display the serial data exchanged between the ModScan application and the slave device associated

with this document. The data display splitter view will show data transmitted to the slave device and data

returned from the slave device as communications occur during the normal polling cycle. This will help to

isolate a problem with possible misinterpretation of the modbus protocol. Data will be displayed in either

decimal or hex, depending upon the preference settings in effect for viewing the modbus data points.

Normal data collection, (if enabled), will continue.

Capturing Data

Use this command to store the results of each modbus query to an ASCII text file. Data is written to the

specified file, (one scan per line), in the format selected for display in the lower splitter view, (i.e. decimal,

hex, float). If an error was encountered during the polling transaction, the error message will be logged to

the file rather than the data. There is no “wrap-around” feature for collecting data. New data is appended

to the file on each query and the file can become very large vary fast if used with a short scan frequency.

The ability to save modbus data directly to a database is an optional feature of ModScan. If the feature is

unavailable, the Database Capture menu selection will be grayed out and not accessible. If enabled, this

command allows you to store the results of each query into an active Microsoft compatible database for

interfacing modbus data with custom designs.

 41

User Defined Messsages

Use this command to customize a command string for transmission to a designated modbus slave device.

This command is useful for observing the slave response to non-standard modbus queries or to test its

reaction to requests for data which may not be available. The slave device should respond with the proper

exception message if a master device asks for data which is beyond its address range or otherwise

unavailable via the modbus.

After transmitting the user string, ModScan will receive characters for the entire time-out period specified

for the connection. The results will then be updated to the appropriate edit control on the dialog box. User

defined messages transmitted to a slave device will not show up in the ModScan message counters.

Scripts

Test scripts consist of ASCII text data field separated by commas. They may be constructed using any word

processor or spreadsheet application. A test script entry consists of at least 7 data fields as depicted in the

following example script, (example.csv).

//

// Example Test Script for ModScan Application

//

// Each Script entry consists of the following

// comma delimited data fields:

//

// TEST NAME, NODE, FUNCTION, ADDRESS, LENGTH, DATA, CONTROL CODE

//

// Double slashes on the front of a line denote comments

//

// The following Control Codes may be used (i.e. last field on each line)

// \ -- Continue DATA fields on next line

// C -- Generate Bad CRC message to slave

// D -- Check response data quantity only, (ignore actual data)

// 1 -- Expect Exception Response 01

// 2 -- Expect Exception Response 02

// 4 -- Expect Exception Response 04

// R -- Expect no Response

// T (default) -- Verify Response Data

//

//

// First Test:

// Write 20 Coils to Node 1 starting at address 100

// Data is alternating pattern of ones & zeros

// (DATA field consists of 32-bits and may be specified

// as a decimal, hex or floating-point value)

//

Preset Multiple Coils,1,15,100,20,0xAAAAA,T

//

//

// Second Test:

// Verify results of first test by reading the pattern back

//

Verify Coil Status,1,1,100,20,0xAAAAA,T

//

// Third Test:

// Read 100 Input Status values

 42

// ignore the data and only verify proper quantity returned

//

Verify Input Status,1,2,100,100,0,D

//

//

// Forth Test:

// Check Slave Response to request for 1000 registers

// (Should probably generate an exception response)

//

Test Exception 2,1,3,100,1000,0,2

//

// Fifth Test:

// Check Slave Response to bad CRC

//

Invalid Request,1,1,100,1,0,C

//

// Sixth Test:

// Query an unknown device & expect no response

//

Query Device 73,73,1,1,1,0,R

//

// Seventh Test:

// Write 6 Holding Registers with data

// (Each floating point number represents

// two registers -- The NAME field on the

// continuation line is ignored)

//

Write Floats,1,16,100,6,1.00,\

,2.00,3.00,,,,T

//

// Eighth Test:

// Verify Test Seven by reading back the Registers

//

Read Floats,1,3,100,6,1.00,\

,2.00,3.00,,,,T

//

// END OF SCRIPT

end

 43

Database Operation

An optional feature of ModScan32 allows you to write data directly into a Microsoft compatible database

such as Access. ModScan uses the Jet database engine to provide an efficient exchange of information from

an addressed slave device into the designated database table. Selecting the Dbase Capture menu item

allows you to associate a ModScan document with a given database table. The table will then be updated

with new data each time the slave device is polled. If you change the properties of the document while

collection is enabled, updates to the database will temporarily cease. Database updates will resume if the

original properties are restored.

ModScan attempts to write the modbus data associated with a particular document as a linear table

consisting of the time, status code, and value for each defined point. The table is created with the number

of columns equal to the number of points selected in the active document plus two additional fields to

contain the time & date and the status code associated with each reading. Table headers to identify each

column consist of the 5-digit modbus address for each data point. For example, a table defined to contain 5

input registers beginning at address 44 would look like:

Time Status 30044 30045 30046 30047 30048

11/5/97 12:53 P.M. 0 0000 0001 0002 0003 0004

11/5/97 12:54 P.M. 0 0000 0001 0002 0003 0004

11/5/97 12:55 P.M. 0 0000 0001 0002 0003 0004

 44

 OLE Automation

An optional feature of ModScan32 is the ability to access modbus data using OLE Automation routines.

This allows custom programs to be generated, (using Visual Basic, Excel Basic, etc.,), to interpret and

format data according to your specific requirements. OLE Automation routines provide both read and write

access to one or more modbus slave devices through the ModScan application.

Using the OLE Automation routines is a very simple process:

The VBA application links to the ModScan32.tlb file, (Type Library), which details the names for each

automation procedure and its argument list. From the Visual Basic development framework, this is done by

selecting the menu item to include a custom type library and then browsing for ModScan32.tlb. During the

initial Form Load operation, the application must call Create Object as follows:

CreateObject("ModScan32.Document")

The application then creates one or more PollRequests which define an array of data points to be read from

a modbus device. Data defined by the Poll Request will be automatically scanned by the ModScan

application on a 1 second basis. (NOTE: The ModScan application must be connected to the modbus

network prior to the VBA application starting up.)

The application uses the handle returned from the CreatePollRequest procedure to access, (read or write), a

value within the defined array.

During application termination, it must free the memory used by the ModScan application to maintain the

data points by deleting any Poll Requests created.

Refer to the Visual Basic Example application included with the ModScan distribution files for additional

details.

OLE Automation Routines

The following OLE Automation routines are supported by ModScan32:

short CreatePollRequest (short Device, long Address, short Length)

Arguments:

Device - Specifies the slave device address

Address - Specifies the data point address,(in modbus master (5 digit) format.

coil status addresses: 00000-09999

input status addresses: 10000-19999

input register addresses: 30000-39999

holding register addresses: 40000-49999

Length - Specifies the number of values included in the definition

Return Value:

 Point Handle - Defines the array structure for future reads & writes

Notes:

Sets up data structures within ModScan to begin polling the specified data. ModScan must be

connected to the modbus network prior to creating the data array. CreatePollRequest returns a

non-zero value if the data structure was successfully created, otherwise it returns 0.

short ReadValue (short PointHandle, short Index, short *pValue)

Arguments:

Point Handle - refers to value returned from CreatePollRequest

Index - Specifies the index into the array structure

*pValue - is a pointer to a value to be returned.

Return Value:

 45

Status - indicates whether or not the operation was completed successfully

Notes:

Status will be MBUS_OK, (0), if the data point was successfully read, otherwise, a non-zero value

indicates one of the defined error conditions.

short WriteValue (short PointHandle, short Index, short Value)

Arguments:

Point Handle - refers to value returned from CreatePollRequest

Index - Specifies the index into the array structure

Value - is the data to be written.

Return Value:

Status - indicates whether or not the operation was completed successfully

Notes:

Status will be MBUS_OK, (0), if the data point was successfully queued for transmission to the

addresses slave. A zero return value does not indicate successful transmission of the request to the

slave device. The controlling application is responsible for verifying the write operation by

reading back the value written.

short ModifyPollRequest (short PointHandle, short Device, long Address, short Length)

Arguments:

Point Handle - refers to value returned from CreatePollRequest

Device - Specifies the new slave device address

Address - Specifies the new data point address,(in modbus master (5 digit) format.

Length - Specifies the number of values included in the definition

Return Value:

Status will be MBUS_OK, (0), if the data point was successfully modified, otherwise, a non-zero

value indicates one of the defined error conditions.

Notes:

Immediately after changing the parameters of a defined data point, the current status of each value

in the array will be set to MBUS_UNINITIALIZED, indicating that the data does not represent

that defined by the device/address definition. The first poll after modification should reflect the

true status of the addressed data array.

short DeletePollRequest (short PointHandle)

Arguments:

Point Handle - refers to value returned from CreatePollRequest

Return Value:

Status will be MBUS_OK, (0), if the data point was successfully modified, otherwise, a non-zero

value indicates one of the defined error conditions.

Notes:

This routine frees up memory allocated by ModScan to support the defined Poll Request.

 46

ModScan OLE Automation Error Return Values

The following status codes may be returned from the ModScan application in response to an OLE

Automation request:

1-255 Modbus Exception Message as returned from slave device.

256 Invalid Data Point Handle

257 reserved

258 Invalid Data Point Address

259 reserved

260 reserved

261 reserved

262 Out-Of-Memory

263 Time-Out, (Data not received from slave)

264 reserved

265 Invalid checksum in response from slave

266 ModScan not connected to modbus network

267 reserved

268 reserved

269 Remote TCP/IP Server not connected

270 Data Uninitialized, (Values not valid)

271 ModScan Demo Time Expired

 47

Visual Basic Example

The example Visual Basic application included with the ModScan32 distribution files is a simple take-off

on the ModScan application itself. The Form creates four array points, (one each for inputs, coils, input

registers, and holding registers). A timer is used to read and update the data once per second. Edit controls

are used to define the addresses as shown below:

Code for the example follows:

Public m_svr As IModSca

Dim PollHandle(4) As Integer ‘Handle for each of the four array points
Dim status(4) As Integer ‘Status return value for each ReadValue request
Dim SlaveDevice As Integer ‘All points use same slave address
Dim StartAddress(4) As Long ‘starting address for each array

Dim Modbus_Id(4) As Long ‘ prefix for selected address
Dim Counter As Integer
Dim temp As Integer
Dim Modbus_Addr As Long ‘qualified 5-digit modbus address

Private Sub coiladdress_Change()
‘
‘ User has changed address for coil array
‘ recalculate 5-digit modbus address
‘ and ModifyPollRequest accordingly
‘
If (IsNumeric(coiladdress.Text)) Then
 StartAddress(1) = coiladdress.Text
 Modbus_Addr = Modbus_Id(1) + StartAddress(1)
 status(1) = m_svr.ModifyPollRequest(PollHandle(1), SlaveDevice, Modbus_Addr, 10)
 StatusMsg (status(1))
End If

End Sub

Private Sub Device_Change()
‘
‘ User has changed slave device
‘ Modify all four PollRequests
‘
If (IsNumeric(Device.Text)) Then
 SlaveDevice = Device.Text

 Modbus_Addr = Modbus_Id(0) + StartAddress(0)
 temp = m_svr.ModifyPollRequest(PollHandle(0), SlaveDevice, Modbus_Addr, 10)

 Modbus_Addr = Modbus_Id(1) + StartAddress(1)
 temp = m_svr.ModifyPollRequest(PollHandle(1), SlaveDevice, Modbus_Addr, 10)

 Modbus_Addr = Modbus_Id(2) + StartAddress(2)
 temp = m_svr.ModifyPollRequest(PollHandle(2), SlaveDevice, Modbus_Addr, 10)

 48

 Modbus_Addr = Modbus_Id(3) + StartAddress(3)
 temp = m_svr.ModifyPollRequest(PollHandle(3), SlaveDevice, Modbus_Addr, 10)
End If

End Sub

Private Sub Form_Load()

‘
‘ Create the ModScan interface object
‘
Set m_svr = CreateObject("ModScan32.Document")

Modbus_Id(0) = 10000 'input status prefix
Modbus_Id(1) = 0 'coil status prefix
Modbus_Id(2) = 30000 'input register prefix
Modbus_Id(3) = 40000 'holding register prefix

‘
‘ create the four PollRequests using
‘ default values
‘
SlaveDevice = 1
For Counter = 0 To 3
 StartAddress(Counter) = 1
 Modbus_Addr = Modbus_Id(Counter) + StartAddress(Counter)
 PollHandle(Counter) = m_svr.CreatePollRequest(SlaveDevice, Modbus_Addr, 10)
 Next Counter

statusline = "** UNINITIALIZED **"
End Sub

Private Sub Form_Terminate()
‘
‘ Free allocated resources
‘
For Counter = 0 To 4
 m_svr.DeletePollRequest (PollHandle(Counter))
 Next Counter

End Sub

Public Sub StatusMsg(Index As Integer)
‘
‘ Generate text status message
‘
If Index = 0 Then statusline = ""
If Index > 0 And Index < 256 Then statusline = "Slave Device Exception Response"
If Index = 256 Then statusline = "Invalid Handle"
If Index = 257 Then statusline = "Modbus Message Overrun"
If Index = 258 Then statusline = "Invalid Address"

 49

If Index = 259 Then statusline = "Invalid Device Address"
If Index = 260 Then statusline = "Invalid Length Specification"
If Index = 261 Then statusline = "Invalid modbus command"
If Index = 262 Then statusline = "Driver Out-Of-Memory"
If Index = 263 Then statusline = "** Time-Out **"
If Index = 264 Then statusline = "Invalid Protocol Specification"
If Index = 265 Then statusline = "** Bad Checksum **"
If Index = 266 Then statusline = "Server NOT Connected"
If Index = 267 Then statusline = "Invalid Response from Driver"
If Index = 268 Then statusline = "Modbus Write Failure"
If Index = 269 Then statusline = "Remote Server not Connected"
If Index = 270 Then statusline = "** UNINITIALIZED **"
If Index = 271 Then statusline = "ModScan Demo Time Expired"

End Sub

Private Sub holdingregsaddress_Change()
‘
‘ User has changed address for holding registeres
‘
If (IsNumeric(holdingregsaddress.Text)) Then
 StartAddress(3) = holdingregsaddress.Text
 Modbus_Addr = Modbus_Id(3) + StartAddress(3)
 status(3) = m_svr.ModifyPollRequest(PollHandle(3), SlaveDevice, Modbus_Addr, 10)
 StatusMsg (status(3))
End If

End Sub

Private Sub inputaddress_Change()
‘
‘ User has changed starting address for
‘ input status points
‘
If (IsNumeric(inputaddress.Text)) Then
 StartAddress(0) = inputaddress.Text
 Modbus_Addr = Modbus_Id(0) + StartAddress(0)
 status(0) = m_svr.ModifyPollRequest(PollHandle(0), SlaveDevice, Modbus_Addr, 10)
 StatusMsg (status(0))
End If

End Sub

Private Sub inregsaddress_Change()
‘
‘ User has changed input register address
‘
If (IsNumeric(inregsaddress.Text)) Then
 StartAddress(2) = inregsaddress.Text
 Modbus_Addr = Modbus_Id(2) + StartAddress(2)
 status(2) = m_svr.ModifyPollRequest(PollHandle(2), SlaveDevice, Modbus_Addr, 10)
 StatusMsg (status(2))
End If

End Sub

Private Sub Timer1_Timer()

 50

‘
‘ Each secon read and update all 10 values
‘ in each of th efour arrays
‘
For Counter = 0 To 9
 status(0) = m_svr.ReadValue(PollHandle(0), Counter, temp)
 StatusMsg (status(0))
If temp = 0 Then
 inputstatus(Counter).Value = 0
 Else
 inputstatus(Counter).Value = 1
 End If
Next Counter

For Counter = 0 To 9
 status(1) = m_svr.ReadValue(PollHandle(1), Counter, temp)
 StatusMsg (status(1))
If temp = 0 Then
 coilstatus(Counter).Value = 0
 Else
 coilstatus(Counter).Value = 1
 End If
Next Counter

For Counter = 0 To 9
 status(2) = m_svr.ReadValue(PollHandle(2), Counter, temp)
 StatusMsg (status(2))
 inputreg(Counter).Caption = temp
Next Counter

For Counter = 0 To 9
 status(3) = m_svr.ReadValue(PollHandle(3), Counter, temp)
 StatusMsg (status(3))
 holdingreg(Counter).Caption = temp
Next Counter

End Sub

 51

Custom Displays

Using the Custom Document Display feature of ModScan allows you to generate graphical displays of

modbus data representing your specific instrumentation requirements. You can mix and match different

types of data from the same or different slave device and have it displayed in a varity of formats. You can

add simple drawing items such as lines, circles, and rectangles to the display along with customized text and

several built-in graphical items such as bar gauges and historical trend charts.

The Custom Document interface always operates in “Design Mode”. To place an object on the display,

simply hold the left mouse button down and drag a rectangle in the aproximate location you wish to insert

the item. A pop-up dialog will appear allowing you to select from the list of MMI Items which may be

drawn on a ModScan custom display. Each item has associated properties which must be defined to tell

ModScan how the item is to be drawn, (refer to the list of items below). After an item has been added to the

display, its properties may be modified by positioning the mouse over the edge of the item and pressing the

right button. The postion of the item may be changed by using the left mouse button to drag the item to a

new location. If an item is associated with a modbus data point, it will be updated with new data based on

the document’s defined scan rate.

Simple Text Display

Properties associated with a simple text item define, of course, the text string to be displayed as well as the

color and font to be used. Text may be displayed in any color and using any installed font available to

Windows. The selected font also defines the character size. Text may be displayed usiing a

foreground/background color combination or displayed transparently on the existing display background.

Discrete Data Values

Modbus Status Inputs and Coil Status values may be added to a custom display. The properties associated

with a Modbus Discrete Value define the source of the data, (slave address & point address), and configures

the point to be read-only or read-write. Only Coil Status values may be writable from the ModScan and if

so designated, double-clicking on a value displayed to a custom form will initiate a dialog box which allows

the value to be changed. Modbus Discrete Values also contain properties which define the color and font to

be used to display the data.

Register Data Values

Similarly to Discrete Data Values, Register Data Values have associated properties to define the souce of

the data and its read/write status. Unlike the discretes, however, ModScan allows register data to be

displayed in different formats, (such as integer, unsigned, floating-point, etc.). Also, a Register Data Value

may be selected to represent a scaled value according to the conventional modbus range selections of 0-

4095 or 0-9999. This allows ModScan to display register data not only as an absolute value of the contents

of a specified register, but also as a more general purpose process-point representation.

Simple Graphical Items

Custom Documents may also contain several types of graphical items not directly associated with modbus

data. Rectangles, circles, and bitmaps may be added to increase the readability of a display and taylor the

document to personal preferences. Rectangles and Ellipses may be added as either solid or bordered items

using any available color. The respective sizes, (height & width), are specified in pixels and may be

adjusted to suit the taste of the user. These items also contain a property which specifies the drawing order

of the display. Selecting “draw first” allows other MMI items to be drawn on top of a rectangle,

circle, or bitmap.

 52

Bar Chart Items

Bar Chart items allow a modbus register value to be displayed as a colored bar whose amplitute represents

its current value. Bar Charts may be drawn vertically, (bottom to top), or horizontally, (left to right), and

the respective sizes are determined by user defined properties. Properties also define the source of the data

used to update the chart and various drawing options such as the colors to use and whether or not to

surround the bar chart with a border.

Trend Chart Items

A Trend Chart MMI Item allows you to represent one or more modbus register values as a line graph of

amplitude over time. Up to five different variables may be displayed within a Trend Chart item with each

register value represented by a defined pen color and scaled between specified high and low limits.

Properties for the Trend Chart define its update frequency and background color as well as allowing the

chart to be optionally surrounded by a border.

Dials

Dial gauges may also be added to a custom display. Properties for the dial include the bitmap to be used to

draw the face of the dial and the modbus register value representing the source of the data used to update its

value. The dial’s needle may be located anywhere on the bitmap by specifying its X & Y coordinates.

Properties also define the needle width, length, and sweep.

 53

ModSim

Following is a concise user’s manual for the operation of ModSim32. Operation of the 16-bit version of

ModSim is similar, but is not detailed in this document.

I. Application Overview

 A. Document/View Architecture

 B. Modbus Data Definition

 C. Display Formats

 D. Connections

II. Commands

 A. File Menu

 B. Connection Menu

 C. Display Menu

 D. Window Menu

 E. Help Menu

III. OLE Automation

 A. Automation Routines

 B. Visual Basic Example

 54

 ModSim Overview

ModSim32 is a Windows Application designed to simulate data from one or more modbus slave devices.

ModSim32 may be connected serially to a modbus master application, or connected to multiple modbus

master client applications via a network. Modbus supports the modbus/TCP communications protocol

standard.

ModSim32 operates as a Windows MDI, (Multiple Document Interface), application, with each document

representing a block of modbus data. Each data block is configured to represent a series of data, (inputs,

coils, input registers, or holding registers), from a defined slave address. Keyboard commands are available

to edit the contents of a data point and OLE Automation routines are supported which allows Visual Basic

or other third-party Windows applications to easily access and change simulated modbus data.

Document/View Architecture

Each ModSim32 document represents a block of data points made accessible to a modbus master

application via the serial port or network. Each data block is defined as an array of coils or registers

beginning at a specified modbus address and representing data contained within a single modbus slave

device. Multiple documents may be opened, defining additional data from the same or different device.

ModSim32 supports multiple simultaneous communication with modbus masters, and each document is

assessible via any connected COM port or network connection.

Standard Windows menu selections are used to manipulate ModSim32 documents. These include

commands to create new documents, write document data to disk, and read data from a disk file. Modbus

data is displayed in a variety of numerical formats, and edit commands are supported which allow access to

and modification of data contained within a ModSim32 document.

Modbus Data Definition

Each ModSim32 document represents a block of contiguous modbus data as defined by the following

parameters:

Device Id Defines the physical modbus slave device represented by the document.

Point Type Defines one of:

INPUT STATUS

COIL STATUS

INPUT REGISTER

HOLDING REGISTER

Address Defines the modbus address of the first document data point.

Length Defines the length of the data array contained within the document

Edit controls accessible from within each ModSim32 document provide access to the above data definition

parameters as well as the physical connection associated with the data.

 55

Display Formats

Input Status and Coil Status values are represented within a ModSim32 document as either 1 or 0. Register

values may be displayed in binary, decimal, hexadecimal, or floating-point notation. Floating-point

representation uses the contents of two consequtive 16-bit registers to assemble one 32-bit IEEE floating-

point value. ModSim32 can store a floating point value withe the most-significant 16-bits of data in the

low-order register address or the high-order register address.

Using the mouse to double-click on a displayed value will present a dialog box which allows you to edit the

contents of the data point. This dialog box also provides the configuration mechanism which allows

ModSim to automatically change a data point’s value based on a clock tick. Register contents may be

configured to increment, decrement or generate a random number between two specified limits.

Connections

Menu commands are available which allow you to define the characteristics of a serial connection to your

modbus network. ModSim32 supports physical baud rates up to 19.2K and may be used to simulate data

using either the RTU or ASCII transmission modes. ModSim32 supports multiple simultaneous

connections, and each document is accessible to multiple connections. ModSim32 may also be used to

simulate a modbus/TCP network server by selecting the appropriate command under the Connect menu.

 56

ModSim Commands
File Menu

The File menu offers the following commands:

New Creates a new document. Use this command to create a new document in ModSim32.

Open Opens an existing document. Use this command to open an existing document in a new

window. You can open multiple documents at once. Use the Window menu to switch

among the multiple open documents.

Close Closes an opened document. Use this command to close all windows containing the

active document. ModSim32 suggests that you save changes to your document before

you close it. If you close a document without saving, you lose all changes made since

the last time you saved it. Before closing an untitled document, ModSim32 displays

theSave As dialog box and suggests that you name and save the document.
You can also close a document by using the Close icon on the document's window.

Save Saves an opened document using the same file name. Use this command to save the

active document to its current name and directory. When you save a document for the

first time, ModSim32 displays the Save As dislog box so you can name your document.

Save As Saves an opened document to a specified file name. Use this command to save and name

the active document. ModSim32 displays Save As dialog box so you can name your

document.

Save Test Saves each open document and creates a test configuration file. Use this command to

save each open document and create a test configuration file which may be later

restored. If an open document has not been previously saved to disk, ModSim32 will

prompt you for a file name under which to save the document. The test configuration

file which is created contains the name of each document and may be used to

automatically reopen each one during the Restore Test command.

Restore Test Restores a previously saved test configuration, (i.e. opens each document file). Use this

command to restore a previously saved test configuration. Each document which was

open during the corresponding Save Test operation will be reopened and associated with

a modbus connection. ModSim may automatically open a test configuration on startup

by including the test file name as a command line option.

Exit Exits ModSim32.

 57

Connection Menu

The Connection menu offers the following commands for configuring each of the four COM ports and

starting and stopping the MBAP Network Server:

Connect

Port 1 Allows you to configure COM Port 1.

Port 2 Allows you to configure COM Port 2.

Port 3 Allows you to configure COM Port 3.

Port 4 Allows you to configure COM Port 4.

Port 5 Allows you to configure COM Port 5.

Port 6 Allows you to configure COM Port 6.

Port 7 Allows you to configure COM Port 7.

Port 8 Allows you to configure COM Port 8.

Port 9 Allows you to configure COM Port 9.

modbus/TCP Enables ModSim32 to operate as a mobus network server

Dosconnect

Port 1 Disables communication via COM Port 1

Port 2 Disables communication via COM Port 2

Port 3 Disables communication via COM Port 3

Port 4 Disables communication via COM Port 4

Port 5 Disables communication via COM Port 5

Port 6 Disables communication via COM Port 6

Port 7 Disables communication via COM Port 7

Port 8 Disables communication via COM Port 8

Port 9 Disables communication via COM Port 9

modbus/TCP Shuts down the network server

The configuration dialog box used to connect a PC COM port allows you to select the baud rate, parity, and

protocol selections.

Display Menu

The Display menu allows you to define the numerical format used to display modbus register data:

Binary Displays data as a series of 16 discrete values.

Decimal Displays data as a decimal number in the range -32767 to 32768

Hex Displays data in hexadecimal (0000-ffff)

Floating Point Displays data as a floating-point value using the lowest addressed register as the most significant 16-

bits of data.

Float (Swapped) Displays data as a floating-point value using the highest addressed register as the most significant 16-

bits of data.

 58

Window Menu

The Window menu offers the following commands, which enable you to arrange multiple views of multiple

documents in the application window:

Cascade Arranges windows in an overlapped fashion.

Tile Arranges windows in non-overlapped tiles.

Arrange Icons Arranges icons of closed windows.

Window 1, 2, ... Goes to specified window.

Help Menu

The Help menu offers the following commands, which provide you assistance with this application:

Help Topics Offers you an index to topics on which you can get help.

About Displays the version number of this application.

 59

OLE Automation

ModSim32 supports two OLE Automation functions which may be used to customize it’s operation for

automated testing applications. Using Visual Basic or similar Windows OLE Automation Client, the user

can access and modify modbus data points defined within a ModSim32 document.

OLE Automation Routines

short ReadValue (short NodeAddress, long PointAddress, short *pValue)

Arguments:

Node Address - refers to slave address associated with a ModSim32 document.

PointAddress - Specifies the address of the data point to be read,

(in modbus master (5 digit) format)

coil status addresses: 00000-09999

input status addresses: 10000-19999

input register addresses: 30000-39999

holding register addresses: 40000-49999

*pValue - is a pointer to a value to be returned.

Return Value:

Status - indicates whether or not the operation was completed successfully

Notes:

Status will be MBUS_OK, (0), if the data point was successfully read, otherwise, a non-zero value

indicates that the value could not be located.

Short WriteValue (short NodeAddress, long PointAddress, short Value)

Arguments:

Node Address - refers to slave address associated with a ModSim32 document.

PointAddress - Specifies the address of the data point to be read,

Value - is the data to be written.

Return Value:

Status - indicates whether or not the operation was completed successfully

Notes:

Status will be MBUS_OK, (0), if the data point was successfully written, otherwise non-zero.

 60

Visual Basic Example

A very simple Visual Basic example project is included with the ModSim32 distribution files which

demonstrates how to access/modify data points contained within a ModSim32 document. The example

project simply updates a holding register based on a one second timer and updates a text control on the

form.

To create the project, perform the following steps:

Use the Project Framework to Browse for ModSim32.tlb

In the General Definitions:

 Public m_sim As IModSim

In Form Load:

 Set m_sim = CreateObject("ModSim32.Document")

On 1 second Timer:

 status = m_sim.WritePoint (1, 40100, tick)
 if status = 0 Then
 tick = tick + 1
 End If

 status = m_sim.ReadPoint (1, 40100, temp)
 if status = 0 Then
 text1.text = temp
 End If

 61

MNetSvr

Following is a concise user’s manual for the operation of MNetSvr.

I. modbus/TCP

II. Application Overview

 A. Commands

 B. Views

 62

modbus/TCP (MBAP)

The Modbus Applications Programming Interface, (MBAP), protocol specification provides extensions to

the messaging descriptions which allow components to communicate over TCP/IP networks. Developed by

Modicon to support direct ethernet connections to PLC’s, the MBAP

protocol defines header information which routes modbus packets between network devices transparent to

other network activity. Whereas a serial modbus device, (slave), can only provide data to a single master, a

network slave device can communicate with many different master applications asynchronously using the

MBAP protocol.

The MBAP protocol uses a Client/Server paradigm. A server application contains data, (in this case data

from one or more modbus devices), which is made accessible to various client applications on the network.

A server application runs continuously, whereas any given client application may start-up or shut-down at

any time. A TCP connection is established between the client and server based on a request from the client

during start-up. Once the connection is established, communications occur between the two as though they

were connected serially. Multiple clients may be connected with the server at the same time, with each

connection having

full access to the data.

The MNetSvr application was designed to operate as a MBAP compatible interface between network client

applications, (such as ModScan32), and serial slave devices. MNetSvr opens TCP Port #502 and listens for

other network devices to initiate a connection. When a connection is made, MNetSvrspins off a separate

thread of execution to process requests from the connected client. As far as the client application is

concerned, it appears as though it has exclusive access to the slave device, with all messaging activity

identical to that which would occur if the device were connected locally.

 63

MNetSvr Overview

The MNetSvr application was designed to operate as a MBAP compatible interface between network client

applications, (such as ModScan32), and serial slave devices. MNetSvr opens TCP Port #502 and listens for

other network devices to initiate a connection. When a connection is made, MNetSvr spins off a separate

thread of execution to process requests from the connected client. As far as the client application is

concerned, it appears as though it has exclusive access to the slave device, with all messaging activity

identical to that which would occur if the device were connected locally.

 MNetSvr supports modbus message types 01-06, 15& 16. Requests for modbus data are accepted via a

network connection, forwarded to the specified serial slave device, and the response from the slave is

transmitted back to the network client.

Commands

There is only one menu command supported by the MNetSvr application. File Connect allows you to

define the operating characteristics of the PC COM port used for communication with the serial slave

device(s). This command provides a dialog box to define the associated baud rate, parity, and protocal,

(ASCII or RTU), which matches the characteristics of the attached slaves. The serial connection must be

started prior to data being made accessible to network devices.

Views

The MNetSvr display window is divided into two parts, (views), separated by a horizontal splitter control.

The splitter bar is used to adjust the relative sizes of the two views.

The upper splitter view is used to display network events. As client applications connect and disconnect, a

message will be added to the display which details the time and description of the event.

The lower splitter view is used to display the serial data stream as transmitted to and from a connected slave

device. Each modbus transaction occurring between the MNetSvr application and a slave device will be

displayed in this view.

 64

 65

MNetMon

Following is a concise user’s manual for the operation of MNetMon.

I. Application Description

 A. Overview

 B. Serial Connections

 C. Network Connections

II. Menu Commands

 A. Connect

 B. Stale Data Timer

 C. Message Statistics

 D. Freeze Display

 E. Browse Data Points

 66

MNetMon Description
Overview

What is MNetMon and why do you need it? First of all. MNetMon is a Win32 software application

designed to operate under Windows. It runs on Windows 95, Windows 98 or Windows NT. It uses all

standard Windows drivers, so no special hardware or drivers are required for its operation. MNetMon was

designed to provide a seamless interface between modbus devices and a TCP/IP network. It uses two PC

serial ports to monitor an active RS-232 modbus communications link, capturing data as it is exchanged

between the modbus master and modbus slave devices, and presents this data to other network PC’s using

the standard MBAP protocol as defined by Groupe Schneider.

MNetMon is an unintrusive data monitor. No changes are required in the existing modbus network.

MNetMon simply attaches to the network as shown and monitors character traffic. When it sees data points

transmitted in response to the Master’s poll, MNetMon copies the data to a local memory buffer accessible

to the network server. As data is refreshed, the buffer contents are updated. Any PC connected to the

TCP/IP network operating as an MBAP client may access the data buffer to obtain the data. Several MBAP

compatible network client applications are available, including ModScan32 and those custom VBA

applications generated using the modbuss OCX control from WinTECH Software.

MNetMon does not provide Write Access to the data. The PC’s Transmit lines are not connected, so

there’s no way the monitoring application can interfere with normal modbus communications. The integrity

of the original modbus link is maintained, and MNetMon does not have to be running in order for the

Master and Slave(s) to communicate. MNetMon, in effect, expands the number of modbus ports from any

given slave device to a virtually unlimited number. The port originally used to communicate with a single

Master device, may now service many asynchronous network connections without increasing the cost or

complexity of the existing link. Data from a single device may now be routed through-out a plant wide

network seamlessly and inexpensively.

 67

Serial Connections

MNetMon uses a very simple concept. The nature or RS-232 allows multiple receivers to be connected to a

single transmitter. As long as the total cable length does not exceed the RS-232 specification, a listening

device, (in this case MNetMon), may tap into the transmit signal of an existing communications link and

‘hear’ everything that’s being said. By using two PC COM ports and listening the transmit from both the

master and slave device, MNetMon is able to capture data passed back and forth.

RS-232 devices are classified as DTE or DCE, (Data Terminal Equipment or Data Communications

Equipment). The standard pin-out arrangement allows a straight 25-pin cable to be attached between an

DCE device and a DTE device. If a DCE device is attached to another DCE device, (or DTE to DTE), the

cabling conductors must be switched such that the proper active pins are connected to the proper passive

pins on the corresponding device, (i.e. Transmit to Receive, Request to Send to Clear to Send, etc.).

The three primary RS-232 signals are located on pins 2,3 & 7 of a twenty-five pin “D” connector. Pin 7 is

ground; 2&3 are either Transmit & Receive or Receive & Transmit, depending on the configuration of

DCE/DTE. On 9-pin connectors 2,3 & 5 are used, with 5 being ground.

The connections to the monitoring device consists of two serial connectors, each with two conductors,

(Receive & Ground for port 1, and Receive and ground for port 2). The two receive lines may be connected

to either end of an RS-232 cable segment on pins 2&3. Both Grounds may be connected to pin 7. In this

configuration, MNetMon can receive data from device A on port 1, and data from device B on port 2.

Network Connections

MNetMon utilizes the built-in networking capabilities of Windows to access the plant LAN. MNetMon is

a Windows Sockets application. During start-up, MNetMon opens a TCP service port at address 52 and

awaits connection attempts from other network devices. As MBAP client applications connect, separate

communications threads are created to handle each communications link concurrently. Each connection has

full, (Read-Only), access to data captured and collected by MNetMon.

 68

MNetMon Commands
Connect

To begin collecting data from the modbus network, you must issue the Connect menu option. MNetMon

will guide you through a series of dialogs prompting for the port assignment of the connection to the

modbus master and slave transmitters as well as the hardware characteristics of the link, (baud rate, parity,

etc). After enabling the specified serial ports. MNetMon will begin monitoring character data on the two

links. As data is received, it will be displayed to the MNetMon display as HEX characters. Data obtained

from the Master port will be displayed in Blue. Slave data will be Black.

The Disconnect menu item stops MNetMon from observing the link.

Stale Data Timer

As MNetMon recognizes slave responses to a master request for data, it will copy the data to local memory

to be used in servicing possible network clients. As data is received, it is time-stamped. Since MNetMon

only captures data as it is requested by the master, it has no way of keeping data current. It cannot poll the

slave device to refresh its data, so if for any reason, the master quits polling a particular data address, the

memory image within MNetMon will become dated. To prevent a network client from reading old data

within MNetMon, the application maintains a Stale Data Timer. Specified via the Setup Data Timer menu

option, this timer determines how long a particular piece of data is held by MNetMon before it is discarded.

If the data values are not refreshed by the time the Stale Data Timer expires, it will be removed from

MNetMon’s data base and client applications attempting to access the addresses will receive an exception

status indication from the server.

Message Statistics

MNetMon maintains timing statistics for modbus messages captured via its serial ports. A review of these

statistics may be made by selecting the View Statistics menu option.

Counters are maintained for each message received from the Master and Slave ports, as well as any message

received containing an invalid checksum. MNetMon also measures the slave’s response time to modbus

queries, and this information is displayed to the right of the statistics dialog. Shown in milliseconds, values

represent the maximum, minimum, and average response times.

Freeze Display

During an active monitoring session, the MNetMon display scrolls data as fast as it’s collected. If you wish

to stop the display from updating so you can read the character data, you may select the Freeze menu

option. When frozen, the display may be manually scrolled to observe actual message contents for

troubleshooting purposes. MNetMon continues to monitor the link and update its local data point directory

during this time. Pressing the Freeze menu selection again will return the display to its live scrolling

operation.

 69

Browse Data Points

You may also review the data point directory as collected by the MNetMon monitoring operation. All

modbus data currently contained within MNetMon local memory is made available via the View Data menu

selection.

Data presented by these dialogs represent a copy of MNetMon data made at the time the command was

issued. The data presented here is not live. In other words, if you’re looking at a range of addresses and

MNetMon updates the data based on a new modbus response, these dialogs will not reflect the changes.

They are made available as a diagnostic aide so you can tell which range of addresses the MNetMon

application is picking up.

 70

 71

Modbus Master ActiveX Control

Following is a concise user’s manual for the operation of the Modbuss OCX control

I. Overview

 A. Controls

 B. RegSvr32

 C. MbOCXsvr

II. Port Control Description

 A. Properties

 B. Methods

 C. Events

III. Modbus Data Control Description

 A. Properties

 B. Methods

 C. Events

 D. Block Writes

IV. Visual Basic Example

V. Implementation Notes

 72

Controls Overview

Modbuss.ocx contains 32-bit custom controls which allow Visual Basic and other OLE Container

applications to quickly and easily access data points contained in a modbus slave device connected to the

PC. The modbus device may be connected directly to a PC COM port or accessed via a network

connection using the modbus/TCP, communications protocol standard. Modem connections are also

supported using the Win32 TAPI interface. Multiple controls may be used within one application to access

multiple slave devices asynchronously.

Two controls are supplied with modbuss.ocx. The Serial Control, (Modbus Port Configuration Control), is

used to configure the physical operating characteristics of a PC COM port, (baud rate, parity, etc.), as well

as the modbus software protocol to be used, (RTU or ASCII).

The Modbus Data Control exposes properties which define the machine, COM port, slave device, point

address, and point type. These properties may be static, (defined when the control is created), or updated

programatically. Up to 128 integer data values, (64 floats), may be read from a device via each control.

Modbus data is presented to the controlling application as an array of values, (either Boolean, integer, or

float, depending on the specified point type).

RegSvr32

RegSvr32.exe is a DOS application supplied by Microsoft for making additions and changes to the

Windows Registry. Before the modbuss controls can be used by an application they must be properly

installed into the Registry. To do this, execute RegSvr32.exe and supply the full path name to the control as

an argument. The following command line shows how to register the modbuss control, (assuming the file is

contained in the C:\MODBUSS directory):

Regsvr32 c:\modbuss\modbuss.ocx

MbOCXsvr Helper Application

Modbuss.ocx controls operate in conjunction with two support applications supplied by WinTECH

Software. Modbusm.dll is responsible for the actual MODBUS message formatting logic and control of the

PC COM, TAPI, and network drivers. MbOCXsvr.exe is responsible for coordinating data traffic between

the dll and the control(s). To simplify the design of user applications, each Modbus Data Control appears

to have exclusive access to the designated set of IO data points. In effect, the system must be capable of

supporting multiple controls simultaneously. These controls may be located on the local machine or

possibly multiple remote machines. In addition, each control may, at any given point in time, reference data

from any device on any available COM port.

The mbOCXsvr application is a required component of the modbuss ocx control. Each time a Modbus Data

Control is started, it will attempt to start the mbOCXsvr application, (if not already running). As needed,

the control will request specific data from mbOCXsvr and this application is responsible for gathering the

data, (via modbusm.dll), and returning it to the control. If the mbOCXsvr application is terminated, the

controls will cease communication with the MODBUS device(s).

Menu options available from the mbOCXsvr application allow the user to configure the local serial port

setup parameters. The mbOCXsvr background display details statistical counters representing messaging

activity on each of the supported serial channels.

 73

Port Control Description

The Modbus Port Configuration Control, (Serial), is used to programatically control the operating

characteristics of a local PC Com port connected to one or more MODBUS slave devices. Use of the Serial

control within a user application is optional. The hardware parameters configured by this control may also

be set by accessing menu items within the modbuss ocx helper application, mbOCXsvr.exe. Once

configured, these parameters will remain in place and be used to initialize the designated COM port each

time a control within modbuss.ocx is started.

Properties

The Serial control exposes the following properties and methods:

Port The PC COM port identification. (If set to 0, indicates that the connection is to be

made via the first TAPI line device.)

Protocol MODBUS Transmission Mode (0=RTU, 1=ASCII).

TimeOut Defines the timeout associated with the protocol for this control. Specified in

milliseconds, this is the amount of time the MODBUS driver waits for a slave

device to respond after polling for data.

BaudRate Serial Baud Rate setting.

(0=300, 1=600, 2=1200, 3=2400, 4=4800, 5=9600, 6=14400,7=19200)

Parity Odd, Even or No Parity, (0, 1, or 2).

StopBits Number of Stop Bits, (0=1, 1=1.5, 2=2).

RTSHandshaking Enable hardware output flow control using RTS/CTS. The control will ALWAYS

enable RTS prior to transmitting. This property blocks transmission until a CTS is

received from the connected slave.

DTRHandshaking Enable hardware output flow control using DTR/DSR handshaking.

RTSDelay1 Delay in milliseconds between activation of RTS and transmission of the first

character.

RTSDelay2 Delay in milliseconds after transmitting last character before releasing RTS signal.

PhoneNo Phone number to dial during Initialize(). Used only for TAPI connections.

Methods

Initialize() Method which instructs the control to configure the defined port. This method

needs to be controlled programatically if the characteristics of the serial

communications channel change during execution of the application. The use of

the Modbus Port Configuration Control is optional within a program, as the

associated setup parameters may be changed via menu options within

mbOCXsvr and remain valid between executions.

HangupCall() Method used to disconnect a call.

Events

 74

Two events are also available which signal the controlling application when a modem connaction has been

made or dropped.

Connect Event which is fired upon successful establishment of a remote TAPI

connection..

ConnectionDrop Event which is fired if the TAPI connection fails.

 75

Modbus Data Control Description

The Modbus Data Control, (modbuss), reflects the status of one or more I/O data points contained within a

connected MODBUS slave device. Each control contains an array of up to 128 boolean values, (Coils),

128 integer values, (Registers), or 64 Floating Point values. The data is defined by properties which

identify the device and point address. Standard OLE Get and Set methods allow modbus data points to be

accessed transparently by the controlling application by simply moving data to/from the array.

Properties

The following properties and methods define the operating characteristics of the Modbus Data Control:

Port The PC COM port identification. (May be overridden by the UseNetwork

property.)

Node MODBUS slave device address.

Address Defines the starting data point address within the designated slave device.

The address specification implicitly defines the MODBUS message type used

to access the data.

Address Range Function Code Data Type

00001-09999 01 Coil Status

10001-19999 02 Input Status

30001-39999 04 Input Registers

40001-49999 03 Holding Registers

Length Defines the number of data points to be scanned from the MODBUS slave

device. If floating point values are used, remember that each 32-bit floating-

point value requires two consecutively numbered 16-bit MODBUS registers.

The Length property must be defined in either the number of Coils or the

number of Registers scanned from the device. For example, if a control is

configured to expect 40 floating point values, the Length property would be

set to 80. The maximum number of values which may be scanned from any

particular MODBUS slave device may be less than 128. If a control is

configured to scan more values than the device can support, an exception

status will be generated by the control.

Busy Indicates that control is processing a modbus message to a connected slave.

The Busy property is set by the control whenever a poll for data is made to

the MODBUS slave. It is cleared when the requested data is received or the

when the device times-out. The Busy property may be used by the

application to synchronize data requests. If an Update request is made with

the Busy flag set, the control will ignore the request and return an error

condition, (FALSE). The only exception to this is in the event a Poll for data

takes longer than 10 seconds, in which case the Update() Method overrides

the Busy indication and initiates a new poll.

Status This status property is set by the control to indicate an error condition. This

 76

could be the result of the user application making an invalid request, (such as

setting the Length Property > 128), or as the result of a communications error

with the designated MODBUS slave device.

WriteStatus This status property is set by the control to indicate the results of the last write

command issued from the control. The WriteStatus may indicate an error

condition occurring as the result of an invalid write command, (such as

attempting to write an index beyond the length of the data array), or as a result

of an error returned from the designated slave device. Normally, the

WriteStatus will be set to WRITE_PENDING, (310), after the user code

modifies a data value. After the results of the message transaction are

returned from the slave device, WriteStatus will reflect any errors which may

have occurred. A value of zero indicates successful implementation of the last

write command.

InhibitReadAfterWrite This boolean property determines how modbus data is refreshed to the control

after a Write operation. Data accessible to your application is maintained

local to the control and only updated from the modbus slave device in

response to an Update() method. Issuing a Write command to the slave can

cause the data contained within the control to be out of sync with newly

written data in the remote device, necessitating a read request, (Update()

method), to refresh the control’s data. The default setting of this property to

FALSE allows the control to automatically issue an Update() to refresh the

value of the data array immediately after the completion of a Write command.

Setting the value of this property to TRUE, bypasses this extra Update()

causing the data to only be refreshed under user control.

Additional properties are defined which allow the control to access data from a remote machine connected

via a compatible network.

IPAddr1 . . . 4 These four properties allow the controlling application to configure the control

to access MODBUS data via the internet protocol using modbus/TCP. The

IPAddr properties define the IP Address of the corresponding modbus/TCP

server application residing on the machine connected to the MODBUS slave

device of interest. If configured for remote operation, all other control

properties operate the same as if the MODBUS device were attached via a

local COM port. An Update(), Coil(), Register(), or Float(), operation will

initiate the request to the designated remote machine rather than the local

machine.

UseNetwork If TRUE, the control will attempt to access data across the network using the

specified IP address of the server. If False, the control will attempt a direct or

TAPI connection as specified by the Modbuss.Port property.

 77

Methods

Update() Instructs the control to update its data array with fresh data values from the

MODBUS slave device. Update will return an error, (FALSE), if the control’s

IO Point property definitions are invalid or if the control is busy processing a

previous Update() request. When the results of the data poll are obtained, the

control will trigger the Ready event. If the poll for data fails, the Busy status

indicator will go false, but the Ready event will not fire. The UpdateFinished

event will fire in either case, as long as the Update() method returns TRUE

.
IssueCmd() This method is used to write a user-defined message to the attached modbus

slave. Data messages are transmitted to the designated slave unfiltered and the

response message is supplied via the ReadCmdResponse() method as an array

of bytes returned from the slave. If IssueCmd() returns TRUE, you are

guaranteed to receive a CustomCmdResponse Event, otherwise, the message

failed and was not transmitted to the slave. Arguments for the IssueCmd

method define the slave, (node), address, modbus message id, and the data bytes

to be transmitted. Data bytes are supplied as binary values, regardless of the

modbus transmission mode used, (RTU or ASCII). The control will assemble

the message appropriately for the connected device, combining the node, msg

id, data bytes, and checksum prior to transmission.

ReadCmdResponse() This method is used to read the unfiltered byte response received from a

modbus slave in response to a command initiated with the IssueCmd() method.

Data bytes are returned in the supplied BUFFER, (up to the length specified by

MAXLEN). Data is always returned in binary regardless of the modbus

transmission mode used, (RTU or ASCII). For the ASCII representation, the

control strips off the leading ‘:’ character. If a valid modbus message was

received from the slave, the first byte of the buffer will contain the node

address, the second byte will contain the msg id, and the remaining bytes will

contain data as returned from the slave. The value returned from

ReadCmdResponse indicates the number of data bytes moved to the user

BUFFER.

ShowSvrApp() This method may be used to hide or display the mbOCXsvr application. During

program development, it may be advantageous to keep the helper application

visible to assist trouble-shooting the communications between the ocx and

modbus device. The finished product embedding the control would probably

execute with the helper application invisible to prevent accidental closure by the

user.

ShowSvrApp(FALSE) hides the mbOCXsvr application.

ShowSvrApp(TRUE) shows the mbOCXsvr application.

CloseSvrApp() This method may be used by the containing application to close the mbOCXsvr

helper application whenever the program terminates. Since multiple controls

may be sharing the mbOCXsvr, (possibly from different applications), the

helper application will not automatically terminate when a control exits. If a

single controlling application is used on a given machine, this method should be

executed when the last form closes to clean-up and exit the helper.

 78

Data may be accessed from the control via the following array properties:

Coil() This array property allows the control application to read or write a boolean

value from/to the slave device. A read operation does not verify proper data

addressing of the point prior to returning the value. If the control property data

address has been configured to scan register values from the MODBUS device,

erroneous readings will occur if the Coil property is used to access the data

array. Likewise, if the property is used to update a Coil using a control

configured to read registers, no write command will be issued to the MODBUS.

Register() This array property allows the control application to read or write 16-bit integer

values from/to the slave device. A read operation does not verify proper data

addressing of the point prior to returning the value. If the control property data

address has been configured to scan coil values from the MODBUS device,

erroneous readings will occur if the Register property is used to access the data

array. Likewise, if the property is used to update a Register using a control

configured to read coils, no write command will be issued to the MODBUS.

Float() This array property allows the control application to read or write floating-point

values from/to the slave device. A floating-point value requires 32 bits and is

stored in supporting slave devices as two consecutively addressed registers.

MODBUS command 03 or 04, (Register Reads), are used by the control to

access the data and each control is capable of scanning up to 64 floating-point

values. Some devices may store the value with the high-order bits in the first

register and the low order bits in the second register. Other slave devices may

invert the word-order. Valid floating point values may only be obtained from a

control configured to scan registers. Attempting to read or write a floating-point

value to a control which has been configured to scan Coils will result in

erroneous readings.

Indexing used to access Floating point values is zero-based, times 2, (the index

reflects the starting register location for the floating-point value—NOT the

index of the 32-bit value contained in the array). Each floating point value

requires two consecutive registers, therefore accessing Float(0) returns the value

contained in Register(0) and Register(1). Accessing Float(8) returns the fifth

floating-point value in the array, (contained in Register(8) & Register(9)).

WSFloat() Read or Write a Word-Swapped floating point value.

 79

Events

The Modbus Data Control posts the following events as a result of the Update method:

UpdateFinished The Modbuss UpdateFinished Event signals that the control has finished

processing the Update() request and is ready to accept a new command. The

UpdateFinished event does not indicate success or failure of the Update(). Use

the Status property to evaluate the results of the Update(), or use the Ready

event to indicate new data available.

Ready The Modbuss Ready Event signals that new data has been obtained from the

MODBUS slave device and is now available for use by the control application.

WriteFinished The Modbuss WriteFinished Event signals that the control has finished

processing a Write command to the designated slave device. This event may be

posted in response to a WriteBlk() method or as a result of setting a data

property such as Register, Coil, etc. The WriteFinished event does not indicate

success or failure of the command. Use the Status property to evaluate the

results.

SlaveError The Modbuss SlaveError Event signals that the control has received an error

response from a designated slave device in response to either a modbus Read or

Write command. The Status property will contain the status code detailing the

failure.

CustomCmdResponse The Modbuss CustomCmdResponse Event signals that the control has finished

processing a user-defined message transaction initiated with the IssueCmd()

method. This event does not indicate success or failure of the transaction. The

CustomCmdResponse Event will only be fired if the IssueCmd() method returns

TRUE.

 80

Block Writes

The following property and method determine how modbus data is written to the slave device(s).

EnableBlockWrites This boolean property determines how modbus data is written to the slave

device attached to the control. If this property is FALSE, the control will

attempt to write data to the slave device whenever the controlling application

modifies an array value using Coil(), Register(), Float(), or WSFloat(). Since

writing data to a slave device requires a significant amount of time, the user

may wish to inhibit data writes until the controlling application has updated

several data points, thereby writing multiple values to the slave using a single

modbus message.

If the EnableBlockWrites is TRUE, data will only be transmitted to the slave

using the WriteBlock() method. This allows the controlling application to

update several array points, (via a logic loop), without generating a high

volume of serial traffic to the modbus device. After setting the points to the

desired values, the WriteBlock() method may be used to transmit the data

using a single message, (i.e. 15—Force Multiple Coils or 16—Preset Multiple

Registers).

If the control is configured to perform block updates, care must be taken to

insure that the values contained in the data array is not updated by a read

operation, (Update()), between the time the controlling application makes

modifications and issues the WriteBlock() method. If this happens, the data

may be corrupted and the changes lost. The controlling logic should block

Update() operations while making modifications to the data using

WriteBlock()..

WriteBlock() This method is used to write the current data values contained in the data array

to the modbus slave device. Data is written using the modbus message types

15, (Force Multiple Coils), or 16, (Preset Multiple Registers). All data points

currently defined by the control are transmitted to the slave device.

 81

Visual Basic Example

An example Visual Basic project is included with the modbuss.ocx distribution zip file. This example,

(Demo1), consists of a single VBA form containing standard text controls along with the Modbus Data

Control and Modbus Port Configuration Control contained within modbuss.ocx.

Operation of the Demo1 example scans the IO_Points defined by the edit controls based on a 5 second

timer tick. The status text is updated each second to display error conditions which may appear between

polls, (i.e. time-outs, etc.). Text1, 2, & 3 are used to defined the control’s data defeinition properties, and

the update button allows a data value to be written to the device.

The properties defining the serial port connection and MODBUS slave device address are configured at

build time by modifying the property pages associated with the two modbuss controls.

Timer1 is configured to run each second and is responsible for displaying the current status of the control.

Private Sub Timer1_Timer()
 Call show_status
End Sub

Public Sub show_status()
 If (Modbuss1.Status = 0) Then
 Label4.Caption = "OK"
 ElseIf (Modbuss1.Status < 255) Then
 Label4.Caption = "Slave Device Exception Response"
 ElseIf (Modbuss1.Status = 263) Then
 Label4.Caption = "Slave Device Timeout"
 ElseIf (Modbuss1.Status < 300) Then
 Label4.Caption = "modbus.dll failure"
 ElseIf (Modbuss1.Status = 300) Then
 Label4.Caption = "Uninitialized"
 ElseIf (Modbuss1.Status = 301) Then
 Label4.Caption = "OCX Failure"
 ElseIf (Modbuss1.Status = 302) Then
 Label4.Caption = "Modbus Msg Overrun"
 ElseIf (Modbuss1.Status = 303) Then
 Label4.Caption = "Invalid Data Length"
 ElseIf (Modbuss1.Status = 304) Then
 Label4.Caption = "Invalid Point Address"
 ElseIf (Modbuss1.Status = 305) Then
 Label4.Caption = "Invalid Serial Port"
 ElseIf (Modbuss1.Status = 306) Then
 Label4.Caption = "Invalid Node Address"
 ElseIf (Modbuss1.Status = 307) Then
 Label4.Caption = "Invalid Data Index"
 ElseIf (Modbuss1.Status = 308) Then
 Label4.Caption = "OCX Demo Time Expired"
 End If
End Sub

 82

Timer2 is configured to run every 5 seconds. The Serial Port Configuration Property defines the time-out

associated with the RTU slave device as 1 second. If the user attempts to address a node which is not

present, no indication will be received, (i.e. the Ready event will not trigger). This is why the first timer

updates the status text every second asynchronously to the updates.

Private Sub Timer2_Timer()
 ErrRet = Modbuss1.Update()
End Sub

If the results of the Update Poll are successful, the Modbus Data Control will fire the Ready event,

signifying that new data is now available to be processed. The application must determine if it is to display

integer or boolean data by checking the data address.

Private Sub Modbuss1_Ready()
 If (Modbuss1.Address < 30000) Then
 Call update_coils
 Else: Call update_regs
End If

Public Sub update_coils()
 For i = 0 To 19
 If (Modbuss1.Coil(i) = True) Then
 Label5(i).Caption = "ON"
 Else: Label5(i).Caption = "OFF"
 End If
 Next i
End Sub

Public Sub update_regs()
 For i = 0 To 19
 Label5(i).Caption = Format(Modbuss1.Register(i), "00000")
 Next i
End Sub

 83

Command1 is used to write a data value to the slave device. The value specified by Text5 is written to the

IO Point array indexed by Text4. Again, the application must determine whether to write a coil or register

value by examininig the Address property. The control data is automatically refreshed after a write

operation so the next ready event should displaythe results of the write.

Private Sub Command1_Click()
 If (Modbuss1.Address < 30000) Then
 Call write_coil
 Else: Call write_register
 End If
End Sub

Public Sub write_coil()
Dim index, value As Integer
 If (IsNumeric(Text4)) Then
 index = Text4
 End If
 If (IsNumeric(Text5)) Then
 value = Text5
 End If
 If ((index < 20) And (value <= 1)) Then
 Modbuss1.Coil(index) = value
 End If
End Sub

Public Sub write_register()
Dim index, value As Integer
 If (IsNumeric(Text4)) Then
 index = Text4
 End If
 If (IsNumeric(Text5)) Then
 value = Text5
 End If
 If (index < 20) Then
 Modbuss1.Register(index) = value
 End If
End Sub

 84

Mobuss OCX Implementation Notes

The following notes present programming details concerning operation of the Modbuss Data Control.

if Update() returns TRUE
 guaranteed to get an UpdateFinished Event
 NOT guaranteed to get Ready Event.

if Update() returns FALSE
 UpdateFinished is NOT fired.

Update() may return FALSE under the following conditions:
 DEMO_TIME_EXPIRED
 OUT_OF_BUFFERS
 OCX_OVERRUN
 INVALID_PORT_DESIGNATION
 INVALID_SLAVE_ADDRESS
 INVALID_DATA_ADDRESS
 INVALID_DATA_LENGTH
 OCX_HELPER_FAILURE (MbOCXsvr Not Running)

If EnableBlockWrites is FALSE

 Setting a data value, (modbuss1.register(0) = 1),
 does NOT change the value of the data within the control.

 if modbuss1.register(0) = 0 then
 modbuss1.register(0) = 1
 Text1.Text = modbuss1.register(0)
 endif
 'Text1.Text will be 0

 Setting a data value instructs the control to issue a
 write command to the designated slave device.

 The data within the control will not be updated until
 the next Update() request.

 The control will automatically request the Update()
 after receiving the write message acknowledgement
 from the slave, (regardless of the success indication).

 85

If EnableBlockWrites is TRUE

 Setting a data value will change the contents of the
 control's data. Status will be set to UNINITIALIZED
 indicating that the data within the control does not
 match the data in the slave. No messages are issued
 to the modbus.

 If an Update request is made, new data received from
 the slave device will overwrite any data which may
 have been written by the program. The application
 must insure that Updates are suspended during block
 write operations.

 If BlockWrite() returns TRUE

 Guaranteed to get WriteFinished Event.
 Status will reflect success of failure.
 An Update() request is automatically issued
 by the control after receiving a response from
 the slave.

 If BlockWrite() returns FALSE

 WriteFinished is NOT fired.

 BlockWrite may return FALSE under the following conditions:

 DEMO_TIME_EXPIRED
 OUT_OF_BUFFERS
 OCX_HELPER_FAILURE (MbOCXsvr Not Running)

 86

 87

Modbus Slave ActiveX Control

Following is a concise user’s manual for the operation of the Modbus_slave OCX control

I. Overview

II. Modbus_slave Control Description

 A. Properties

 B. Methods

 C. Events

III. Visual Basic Example

 88

Modbus_Slave OCX Overview

Modbus_slave.ocx contains a 32-bit custom control, which allows Visual Basic and other OLE Container

applications to quickly, and easily interface user-defined data points to a modbus master device connected

to the PC. The modbus master may be connected directly to a PC COM port or accessed via a network

connection using modbus/TCP. The modbus_slave control provides a simple API for establishing a

connection and defining data points which are to be made available to any master device according to the

modbus communications protocol. The control handles all message formatting and interaction with the

Windows COM and network drivers. The only responsibility of the controlling application is to supply a

pointer to the data description which is to be exposed to the connection.

Operation of the modbus_slave control to simulate modbus data involves a two-step process. First, the

controlling application must define and open the physical connection to the modbus. This involves setting

various properties such as BaudRate, Parity, etc. and issuing either the OpenSerial() or OpenTCP() method.

The second step involves defining the data to be exposed to the modbus by issuing the DefineModbusData()

method. Assuming successful implementation of the above, data from within the user program is now

automatically made accessible to any connected modbus master device. The control can support multiple

connections and define multiple arrays of data to be accessed.

Control Description

The following properties and methods define the operating characteristics of the Modbus_slave Control:

Properties

BaudRate Defines the baud rate to be used for serial connections,

(300,600,1200,2400,4800,9600,19200).

DataBits Defines the number of data bits, (7, 8).

Parity Defines parity, (0=No Parity, 1=Odd, 2=Even).

StopBits Defines the number of stop bits, (0=1 stop bit, 1-1.5 stop bits, 2=2 stop bits).

NodeAddress Specifies the slave node address to simulate. Changing this property has no

effect until the next CreateModbusData() method is issued. The control may be

used to simulate multiple slave addresses by changing this property between

calls to CreateModbusData().

TransmissionMode The control can support either ASCII (0) or RTU(1) modbus transmission

modes.

Changing any of the connection properties such as BaudRate, TransmissionMode, etc., will have no effect

until the next OpenSerial() method is issued.

 89

Methods

ClearMessageCounter (LONG InterfaceHandle)

 Method to reset the control’s message counter to zero. The

InterfaceHandle parameter passed to ClearMessageCounter must match

the LONG value returned from a ConnectSerial() or ConnectTCP()

method. The control maintains an internal counter for each open

connection detailing the number of successful message transactions which

have occured on between the control and the modbus master. The

ClearMessageCounter() method simply resets the designated counter to

zero.

CloseInterface (LONG InterfaceHandle)

 Method used to close a modbus connection. The InterfaceHandle

parameter passed to CloseInterface must match the LONG value returned

from a ConnectSerial() or ConnectTCP() method. This method should be

used to gracefully close the modbus connection when the controlling

application terminates. The return value indicates success, (TRUE), or

failure of the operation.

ConnectSerial (SHORT PortNumber)

 The ConnectSerial method instructs the control to open the designated

serial COM port and begin servicing requests from a modbus master

device. The port is opened using the current configuration properties,

(BaudRate, DataBits, Parity, StopBits, and TransmissionMode). The

value returned from ConnectSerial contains the handle, (LONG), to the

connection, and must be maintained by the controlling application as a

possible parameter passed to either CloseInterface() or

ResetMessageCounter(). If an error occurs duiring opening of the serial

port, the ConnectSerial method returns an INVALID_HANDLE_VALUE,

(-1).

ConnectTCP()

 The ConnectTCP() method instructs the control to open a modbus/TCP

service port. TCP port number 502 is opened according to the

modbus/TCP protocol standard as published by Modicon. This allows any

modbus/TCP compatible master client application to connect and access

the control’s data through the connected network. The network may be

physically connected to the PC or accessed via modem using the built-in

dial-up capabilities of Windows. ConnectTCP() will return a non-zero,

(positive), value if the port was successfully opened.

 90

CreateModbusData (LONG Address, SHORT Size, SHORT *pData)

 The CreateModbusData() method exposes user data for access by a

connected modbus master. The supplied Address and Size parameters

define how the data is to be addessed according to the modbus protocol.

The current value of the NodeAddress property determines which slave

node is associated with the defined data.

 Address Range Data Type

 00000-09999 COIL STATUS

 10000-19999 INPUT STATUS

 30000-39999 INPUT REGISTERS

 40000-49999 HOLDING REGISTERS

CreateModbusData() returns a LONG value which identifies the handle to

the specified block of data. This handle should be maintained by the

controlling application to use as an input parameter to the

DeleteModbusData() method or to identify data which may be written

written from the master. The DataHandle is returned as a parameter with

the DataWrittenFromMaster Event.

DeleteModbusData (LONG DataHandle)

 The DeleteModbusData() method removes the specified block of data

from the control. The DataHandle parameter must match the value

returned from a previous CreateModbusData method. Normally, blocks of

data would be created during startup, (Form Load), of an application and

deleted during shutdown. A FALSE return value from DeleteModbusData

signifies that the referenced DataHandle was not contained within the

control.

MessageCounter (LONG InterfaceHandle)

 The control maintains a counter of message transactions which occur over

each connection. These counters are accessible by the controlling

application via the MessageCounter() method. The control only

increments the counter for a connection whenever a valid data message is

received from a connected master device.

 91

Events

The Modbus_slave Control posts the following events to the controlling application:

DataWrittenFromMaster The DataWrittenFromMaster Event signifies that a block of data

maintained by the control has been modified via the modbus connection.

The handle of the effected data block is returned as a parameter with this

event. The controlling application should compare the returned value

with it’s list of defined data blocks to determine which range of addresses

have been written.

TCPConnectionFail The TCPConnectionFail event is posted to the controlling application if

the modbus/TCP service port fails during initialization. Opening the

modbus/TCP service port is an asynchronous operation. The value

returned from ConnectTCP reflects the handle to be used in referencing

the connection, however the port has not been completely opened upon

return from the ConnectTCP() method. The controlling application

should monitor the TCPConnectionFail event and attempt to retry the

ConnectTCP method if it occurs.

 92

Visual Basic Example

An example Visual Basic project is included with the mbslvocx distribution zip file. This example,

(Project1), was designed using Visual Basic 5.0 and consists of a single VBA form containing standard text

controls representing two arrays of modbus data. Defined are twenty HOLDING REGISTERS and thirty

STATUS COILS which may be read/written from a modbus master.

Default settings for the example application operate on COM Port number 1 at 9600 Baud, 8 Data bits, 1

Stop Bit and no parity. Node address 1 and RTU Transmission mode is used. These default settings are

easily customized by accessing the modbus_slave property page during design time

Operation of the Project1 example begins by opening the selected COM port when the form is loaded and

defing two blocks of data for access via the connection. If the user changes any data via an edit control, the

changes are automatically reflected in the data as presented to the modbus master. Project1 uses the

DataWrittenFromMaster event to redraw the edit controls if the data is changed via the modbus connection.

‘ Public Declarations
‘ Data to be made accessible via modbus

Dim MyData1(20) As Integer
Dim MyData2(30 As Integer

‘ Interface & Data Handle Definitions

Dim Interface As Long
Dim Data1 As Long
Dim Data2 As Long

‘ Procedure to update the displayed Register values

Public Sub Refresh_Regs()
 for i = 0 to 19
 Text1(i) = MyData1(i)
 Next i
End Sub

‘ Procedure to update display Coil values

Public Sub Refresh_Coils()
 for i = 0 to 29
 Check1(i).Value = MyData2(i)
 Next i
End Sub

‘ If user changes a coil value, update MyArray2

Private Sub Check1_Click (Index As Integer)
 MyData2(Index) = Check1(Index).Value
End Sub

‘ If user changes a Register value, update MyData1

Private Sub Text1_Change (Index As Integer)
 MyData1(Index) = Text1(Index).Text
End Sub

‘ Open the Interface and create the points

 93

‘ on Form Load

Private Sub Form_Load()
 Interface = Modbus_slave1.ConnectSerial(1)
 Data1 = Modbus_slave1.CreateModbusData (40101, 20, MyData1(0))
 Data2 = Modbus_slave1.CreateModbusData (1, 30, MyData2(0))

End Sub

‘ If data is written from modbus master
‘ Update the display

Private Sub Modbus_slave1_DataWrittenFromMaster (ByVal DataHandle As Long)
 If (DataHandle = Data1) Then
 Call Refresh_Regs
 End If
 If (DataHandle = Data2) Then
 Call Refresh_Coils
 End If
End Sub

‘ Update the Message Counter Status Text once per second

Private Sub Timer1_Timer()
 Text2.Text = Modbus_slave1.MessageCounter(Interface)
End Sub

