# CarrierBoard Design Guide





# SOM-5992 COMe TYPE7

R1210 2018'09'25



#### Contents

| 1   | Introduction7 |                          |                                                                  |   |    |  |  |
|-----|---------------|--------------------------|------------------------------------------------------------------|---|----|--|--|
| 1.1 | Ab            | About This Document 7    |                                                                  |   |    |  |  |
| 1.2 | Ac            | Acronyms / Definitions 7 |                                                                  |   |    |  |  |
| 1.3 | Re            | ference                  | e Documents                                                      | 1 | 1  |  |  |
| 1.4 | Re            | vision                   | History                                                          | 1 | 1  |  |  |
| 1.5 | SC            | )M-599                   | 2 Block Diagram                                                  | 1 | 2  |  |  |
| 1.6 | Мс            | dule P                   | in-out Types 7 - Required and Optional Features                  | 1 | 3  |  |  |
| 2   |               |                          | ess Type 7 Interfaces                                            |   |    |  |  |
| 2.1 |               | -                        | ress Type 7 Connector Layout                                     |   |    |  |  |
| 2.2 |               | -                        | ress Type 7 Connector Pin-out                                    |   |    |  |  |
| 2.2 |               | -                        | Purpose PCI Express Lanes                                        |   |    |  |  |
| 2.0 | 2.3.1         |                          | ral Purpose PCIe Signal Definitions                              |   |    |  |  |
|     | 2.3.1         |                          | xpress Lane Configurations – SOM-5992 Type 7 Limitations         |   |    |  |  |
|     | 2.3.3         |                          | xpress General Routing Guidelines                                |   |    |  |  |
|     |               | 2.3.3.1                  | PCI Express Insertion Loss Budget with Slot Card                 |   |    |  |  |
|     |               | 2.3.3.2                  | PCI Express Insertion Loss Budget with Carrier Board PCIE Device | 3 | 8  |  |  |
|     | 2.3.4         | PCI E                    | xpress Trace Length Guidelines                                   | 4 | 0  |  |  |
| 2.4 | NC            | C-SI                     |                                                                  | 4 | 2  |  |  |
|     | 2.4.1         | NC-S                     | I Signal Definitions                                             | 4 | 2  |  |  |
|     | 2.4.2         | NC-S                     | I General Routing Guidelines                                     | 4 | 3  |  |  |
|     | 2.4.3         | NC-S                     | I Trace Length Guidelines                                        | 4 | 3  |  |  |
| 2.5 | 10            | GB Eth                   | ernet                                                            | 4 | 4  |  |  |
|     | 2.5.1         | 10GB                     | LAN Signal Definitions                                           | 4 | 5  |  |  |
|     | 2.5.2         | Exam                     | ple 10 GB Ethernet Designs                                       | 5 | 3  |  |  |
|     |               | 2.5.2.1                  | 2016 Silicon 10GbE Fiber Implementation                          |   |    |  |  |
|     |               | 2.5.2.2                  | 2016 Silicon 10GbE Copper Implementation                         |   |    |  |  |
|     |               | 2.5.2.3                  | Future Silicon 10GbE Fiber Implementation                        |   |    |  |  |
|     |               | 2.5.2.4                  | Future Silicon 10GbE Copper Implementation                       |   |    |  |  |
|     | 2.5.3         |                          | oupling of 10G_KR_TX Signals                                     |   |    |  |  |
|     | 2.5.4         |                          | LAN Routing Guidelines                                           |   |    |  |  |
|     |               | 2.5.4.1<br>2.5.4.2       | 10GB LAN KR Guidelines<br>10GB LAN Sideban Guidelines            |   |    |  |  |
| 2.6 |               | -                        |                                                                  |   |    |  |  |
| ∠.0 | 2.6.1         |                          | hernet Signal Definitions                                        |   |    |  |  |
|     | ∠.∪. I        | GD EL                    |                                                                  | 0 | I. |  |  |

| Embedded - IoT                                                 |     |
|----------------------------------------------------------------|-----|
| 2.6.2 SDP Pins                                                 | 6 3 |
| 2.6.3 Gb Ethernet Routing Guidelines                           | 6 4 |
| 2.6.4 Gb Ethernet Trace Length Guidelines                      | 6 5 |
| 2.6.5 Reference Ground Isolation and Coupling                  | 6 6 |
| 2.7 USB2.0 Ports                                               | 6 7 |
| 2.7.1 USB2.0 Signal Definitions                                | 6 7 |
| 2.7.1.1 USB Over-Current Protection (USB_x_y_OC#)              | 6 9 |
| 2.7.1.2 Powering USB devices during S5                         | 6 9 |
| 2.7.2 USB2.0 Routing Guidelines                                | 70  |
| 2.7.2.1 USB 2.0 General Design Considerations and Optimization | 7 1 |
| 2.7.2.2 USB 2.0 Port Power Delivery                            | 7 1 |
| 2.7.2.3 USB 2.0 Common Mode Chokes                             | 72  |
| 2.7.2.4 EMI / ESD Protection                                   | 73  |
| 2.7.3 USB2.0 Trace Length Guidelines                           | 74  |
| 2.8 USB3.0                                                     | 75  |
| 2.8.1 USB3.0 Signal Definitions                                | 75  |
| 2.8.1.1 USB Over-Current Protection (USB_x_y_OC#)              |     |
| 2.8.1.2 EMI / ESD Protection                                   | 78  |
| 2.8.2 USB3.0 Routing Guidelines                                | 79  |
| 2.8.3 USB3.0 Trace Length Guidelines                           | 8 0 |
| 2.9 SATA                                                       | 8 1 |
| 2.9.1 SATA Signal Definitions                                  | 8 1 |
| 2.9.2 SATA Routing Guidelines                                  | 8 2 |
| 2.9.2.1 General SATA Routing Guidelines                        | 8 3 |
| 2.9.3 SATA Trace Length Guidelines                             | 8 5 |
| 2.10 LPC and eSPI Interface *SOM-5992 is not support eSPI      | 8 6 |
| 2.10.1 LPC /eSPI Signal Definition                             | 8 6 |
| 2.10.2 LPC Routing Guidelines                                  | 8 9 |
| 2.10.2.1 General Signals                                       | 8 9 |
| 2.10.2.2 Bus Clock Routing                                     | 8 9 |
| 2.10.2.3 Carrier Board LPC Devices                             | 8 9 |
| 2.10.2.4 eSPI Devices                                          |     |
| 2.10.3 LPC Trace Length Guidelines                             |     |
| 2.11 SPI – Serial Peripheral Interface Bus                     |     |
| 2.11.1 SPI Signal Definition                                   |     |
| 2.11.2 BIOS Boot Selection                                     |     |
| 2.11.3 SPI Routing Guidelines                                  |     |

| Emb         | edded - IoT                                                |       |  |  |  |  |
|-------------|------------------------------------------------------------|-------|--|--|--|--|
| 2.11.4      | SPI Trace Length Guidelines                                | 99    |  |  |  |  |
| 2.12 Gei    | neral Purpose I2C Bus Interface                            | 100   |  |  |  |  |
| 2.12.1      | Signal Definitions                                         | 100   |  |  |  |  |
| 2.12.2      | I2C Routing Guidelines                                     | 101   |  |  |  |  |
| 2.12.3      | I2C Trace Length Guidelines                                | 102   |  |  |  |  |
| 2.12.4      | Connectivity Considerations                                | 102   |  |  |  |  |
| 2.13 Sys    | stem Management Bus (SMBus)                                | 103   |  |  |  |  |
| 2.13.1      | SMB Signal Definitions                                     | 104   |  |  |  |  |
| 2.13.2      | SMB Routing Guidelines                                     | 105   |  |  |  |  |
| 2.13.3      | SMB Trace Length Guidelines                                | 105   |  |  |  |  |
| 2.14. Ge    | eneral Purpose Serial Interface                            | 106   |  |  |  |  |
| 2.14.1      | Serial interface Signal Definitions                        | 106   |  |  |  |  |
| 2.14.2      | Serial interface Routing Guidelines                        |       |  |  |  |  |
| 2.14.3      | Serial interface Trace Length Guidelines                   | 107   |  |  |  |  |
| 2.15 CA     | N Interface *SOM-5992 is not support CAN Interface         |       |  |  |  |  |
| 2.15.1      | CAN interface Signal Definitions                           | 108   |  |  |  |  |
| 2.15.2      | CAN interface Routing Guidelines                           |       |  |  |  |  |
| 2.15.3      | 5                                                          |       |  |  |  |  |
| 2.16 Mis    | scellaneous Signals                                        | 1 1 0 |  |  |  |  |
| 2.16.1      | Miscellaneous Signals                                      |       |  |  |  |  |
| 2.16.2      | Power Management Signals                                   |       |  |  |  |  |
| 2.16.3      | Rapid Shutdown * SOM-5992 is not support                   |       |  |  |  |  |
| 2.16.4      | Thermal Interface                                          |       |  |  |  |  |
| 2.16.5      | Miscellaneous Signals Routing Guidelines                   |       |  |  |  |  |
| 2.16.6      | SDIO Signals Trace Length Guidelines                       |       |  |  |  |  |
|             | served Pins                                                |       |  |  |  |  |
|             | Reserved Pins Definitions                                  |       |  |  |  |  |
|             |                                                            |       |  |  |  |  |
| 3.1. Gene   | ral Power requirements                                     | 121   |  |  |  |  |
| 3.2. ATX a  | and AT Power Sequencing Diagrams                           | 121   |  |  |  |  |
| 3.3. Desig  | n Considerations for Carrier Boards containing FPGAs/CPLDs | 125   |  |  |  |  |
| 4. Electric | al Characteristics                                         | 126   |  |  |  |  |
| 4.1. Absol  | 4.1. Absolute Maximum Ratings 1 2 6                        |       |  |  |  |  |
| 4.2. DC C   | 4.2. DC Characteristics 1 2 6                              |       |  |  |  |  |
|             |                                                            | 127   |  |  |  |  |



### List of Tables

| Table 1: Acronyms / Definitions Signal Table Terminology Descriptions               |   | 7 |
|-------------------------------------------------------------------------------------|---|---|
| Table 2: Module Pin-out - Required and Optional Features                            | 1 | 3 |
| Table 3: COM Express Type 7 Pin-out                                                 | 1 | 6 |
| Table 4: General Purpose PCI Express Signal Descriptions                            | 2 | 4 |
| Table 5: SOM-5992 PCI Express Lane Configurations                                   | 3 | 4 |
| Table 6: PCI Express Insertion Loss Budget, 1.25 GHz with Carrier Board Slot Card   | 3 | 7 |
| Table 7: PCI Express Insertion Loss Budget, 2.5 GHz with Carrier Board Slot Card    | 3 | 8 |
| Table 8: PCI Express Insertion Loss Budget, 1.25 GHz with Carrier Board PCIe Device | 3 | 9 |
| Table 9: PCI Express Insertion Loss Budget, 2.5 GHz with Carrier Board PCIe Device  | 3 | 9 |
| Table 10: PCI Express* Slot Card / Device Down Trace Length Guidelines              | 4 | 1 |
| Table 11: NC-SI Signal Description                                                  | 4 | 2 |
| Table 12: NC-SI Trace Length Guidelines                                             | 4 | 3 |
| Table 13: 10GB LAN Signal Description                                               | 4 | 5 |
| Table 14: I2C Data Mapping to Carrier Board based PCA9539 I/O expander              | 5 | 2 |
| Table 15: 10/100/1000 Ethernet Insertion Loss Budget, 100 MHz                       | 5 | 8 |
| Table 16: 10GB LAN KR Trace Length Guidelines                                       | 5 | 9 |
| Table 17: 10GB LAN Sideban Trace Length Guidelines                                  | 6 | 0 |
| Table 18: Gb Ethernet Interface Signal Descriptions                                 | 6 | 1 |
| Table 19: 10/100/1000 Ethernet Insertion Loss Budget, 100 MHz                       | 6 | 4 |
| Table 20: Ethernet Trace Length Guidelines                                          | 6 | 5 |
| Table 21: USB Signal Descriptions                                                   | 6 | 7 |
| Table 22 :USB Insertion Loss Budget, 400 MHz                                        | 7 | 0 |
| Table 23: USB2.0 Trace Length Guidelines                                            | 7 | 4 |
| Table 24: USB3.0 Signal Definitions                                                 | 7 | 5 |
| Table 25: USB3.0 Insertion Loss Budget                                              | 7 | 9 |
| Table 26: USB3.0 Trace Length Guidelines                                            | 8 | 0 |
| Table 27: SATA Signal Definitions                                                   | 8 | 1 |
| Table 28: SATA Insertion Loss Budge                                                 | 8 | 3 |
| Table 29: SATA Trace Length Guidelines                                              | 8 | 5 |
| Table 30: LPC/eSPI Interface Signal Definition                                      | 8 | 6 |
| Table 31: LPC Trace Length Guidelines                                               | 9 | 1 |
| Table 32: SPI Interface Signal Definition                                           | 9 | 2 |

|           |                                                   |         |   | 4 |
|-----------|---------------------------------------------------|---------|---|---|
| Table 33: | BIOS Selection Straps                             | •••     | 9 | 7 |
| Table 34: | SPI Trace Length Guidelines                       | · • • * | 9 | 9 |
| Table 35: | General Purpose I2C Interface Signal Descriptions | 1       | 0 | 1 |
| Table 36: | I2C Trace Length Guidelines                       | 1       | 0 | 2 |
| Table 37: | SMB Signal Definitions                            | 1       | 0 | 4 |
| Table 38: | SMB Trace Length Guidelines                       | 1       | 0 | 5 |
| Table 39: | Serial interface Signal Definitions               | 1       | 0 | 6 |
| Table 40: | Serial interface Trace Length Guidelines          | 1       | 0 | 7 |
| Table 41: | CAN interface Signal Definitions                  | 1       | 0 | 8 |
| Table 42: | CAN interface Trace Length Guidelines             | 1       | 0 | 9 |
| Table 43: | Miscellaneous Signal Definitions                  | 1       | 1 | 0 |
| Table 44: | Signal Definition SDIO                            | 1       | 1 | 3 |
| Table 45: | Power Management Signal Definitions               | 1       | 1 | 4 |
| Table 46: | Thermal Management Signal Definitions             | 1       | 1 | 7 |
| Table 47: | Thermal Management Signal Definitions             | 1       | 1 | 8 |
| Table 48: | SDIO Trace Length Guidelines                      | 1       | 1 | 9 |
| Table 49: | RSVD Definitions                                  | 1       | 2 | 0 |
| Table 50: | Power Management Timings                          | 1       | 2 | 3 |
| Table 51: | Absolute Maximum Ratings                          | 1       | 2 | 6 |
| Table 52: | DC Current Characteristics1                       | 1       | 2 | 6 |
| Table 53: | DC Current Characteristics2                       | 1       | 2 | 6 |
| Table 54  | : Inrush Current                                  | 1       | 2 | 7 |

### List of Figures

| Figure 1: SOM-5992 Block Diagram                                           | 12  |   |
|----------------------------------------------------------------------------|-----|---|
| Figure 2: COM Express Type7 Connector Layout                               | 15  | 1 |
| Figure 3: PCI Express Insertion Loss Budget with Slot Card                 | 36  |   |
| Figure 4: PCI Express Insertion Loss Budget with Carrier Board PCIe Device | 38  |   |
| Figure 5: Topology for PCI Express Slot Card                               | 4 0 |   |
| Figure 6: Topology for PCI Express Device Down.                            | 4 0 |   |
| Figure 7: Topology for NC-SI                                               | 43  |   |
| Figure 8: 10G Ethernet Design for Fiber PHY with Broadwell DE              | 53  | 1 |
| Figure 9: 10G Ethernet Design for Copper PHY with Broadwell DE             | 54  |   |
| Figure 10: 10G Ethernet Design for Fiber PHY with Future SoC               | 55  | 1 |
| Figure 11: 10G Ethernet Design for Copper PHY with Future SoC              | 56  |   |
| Figure 12: 10G Ethernet AC coupling – backplane system                     | 57  | , |
| Figure 13: 10G Ethernet AC coupling – direct cable                         | 57  | , |
| Figure 14: 10G Ethernet AC coupling – PHY on Carrier                       | 57  |   |
| Figure 15: 10GBASE-KR Trace Length Budget                                  | 58  |   |
| Figure 16: 10/100/1000 Ethernet Insertion Loss Budget                      | 64  |   |
| Figure 17: Topology for Ethernet Jack                                      | 65  | 1 |
| Figure 18: USB 2.0 Insertion Loss Budget                                   | 70  |   |
| Figure 19: USB 2.0 Good Downstream Power Connection                        | 72  |   |
| Figure 20: USB 2.0 A Common Mode Choke                                     | 72  |   |
| Figure 21: Topology for USB2.0                                             | 74  |   |
| Figure 22: USB3.0 Insertion Loss Budget                                    | 79  |   |
| Figure 23: Topology for USB3.0                                             | 80  | I |
| Figure 24: SATA Insertion Loss Budge                                       | 82  |   |
| Figure 25: Topology for SATA                                               | 85  | 1 |
| Figure 26: Typical routing topology for a Module LPC device                | 89  | 1 |
| Figure 27: Topology for LPC                                                | 91  |   |
| Figure 28: BIOS Selection LPC Mode                                         | 96  |   |
| Figure 29: BIOS Selection eSPI Mode                                        | 96  |   |
| Figure 30: Topology for SPI                                                | 99  |   |
| Figure 31: Topology for I2C 1                                              | 02  |   |
| Figure 32: Topology for SMB 1                                              | 05  | ) |

| Figure 33: Topology for Serial interface                        | 1 | 0 | 7 |
|-----------------------------------------------------------------|---|---|---|
| Figure 34: Topology for CAN interface                           | 1 | 0 | 9 |
| Figure 35: Topology for SDIO                                    | 1 | 1 | 9 |
| Figure 36: ATX Style Power Up Boot – Controlled by Power Button | 1 | 2 | 2 |
| Figure 37: AT Style Power Up Boot                               | 1 | 2 | 3 |



#### 1.1 About This Document

This design guide provides information for designing a custom system Carrier Board for COM Express Type 7 Module. It includes Signal Descriptions, Routing Guidelines and Trace Length Guidelines. The main purpose is designing Carrier Board for helping customers fast and easy using the module of Advantech to be designed.

#### 1.2 Acronyms / Definitions

| Description                                                                 |  |  |
|-----------------------------------------------------------------------------|--|--|
| Bi-directional signal 3.3V tolerant                                         |  |  |
| Bi-directional signal 5V tolerant                                           |  |  |
| Input 3.3V tolerant                                                         |  |  |
| Input 5V tolerant                                                           |  |  |
| Bi-directional 3.3V tolerant active during Suspend and running state.       |  |  |
| Output 3.3V signal level                                                    |  |  |
| Output 5V signal level                                                      |  |  |
| Open drain output                                                           |  |  |
| Power input/output                                                          |  |  |
| System states describing the power and activity level                       |  |  |
| S0 Full power, all devices powered                                          |  |  |
| S1                                                                          |  |  |
| S2                                                                          |  |  |
| S3 Suspend to RAM System context stored in RAM; RAM is in standby           |  |  |
| S4 Suspend to Disk System context stored on disk                            |  |  |
| S5 Soft Off Main power rail off, only standby power rail present            |  |  |
| 10 Gbit internal copper interface. Operates over a single lane and uses the |  |  |
| same physical layer coding (defined in IEEE 802.3 Clause 49) as             |  |  |
| 10GBASE-LR (Single Mode Fiber 1310 nm ) /ER (Single Mode Fiber 1550         |  |  |
| nm) /SR (Multi Mode Fiber 850 nm)                                           |  |  |
| 4x 10 Gbit internal copper interface. Operates over four lanes and uses the |  |  |
| same physical layer coding (defined in IEEE 802.3 Clause 48) as             |  |  |
| 10GBASE-CX4                                                                 |  |  |
| Advanced Configuration Power Interface – standard to implement power        |  |  |
| saving modes in PC-AT systems                                               |  |  |
|                                                                             |  |  |

Table 1: Acronyms / Definitions Signal Table Terminology Descriptions

| Embedde                                                    | d - IoT                                                                      |  |  |
|------------------------------------------------------------|------------------------------------------------------------------------------|--|--|
| Term                                                       | Description                                                                  |  |  |
| Basic Module                                               | COM Express 125mm x 95mm Module form factor.                                 |  |  |
| BIOS                                                       | Basic Input Output System – firmware in PC-AT system that is used to         |  |  |
|                                                            | initialize system components before                                          |  |  |
|                                                            | handing control over to the operating system.                                |  |  |
| BMC                                                        | Baseboard Management Controller                                              |  |  |
| CAN                                                        | Controller-area network (CAN or CAN-bus) is a vehicle bus standard           |  |  |
|                                                            | designed to allow microcontrollers to                                        |  |  |
|                                                            | communicate with each other within a vehicle without a host computer.        |  |  |
| Carrier Board                                              | An application specific circuit board that accepts a COM Express Module.     |  |  |
| Compact Module                                             | COM Express 95x95 Module form factor                                         |  |  |
| DIMM                                                       | Dual In-line Memory Module                                                   |  |  |
| DRAM                                                       | Dynamic Random Access Memory                                                 |  |  |
| EAPI                                                       | Embedded Application Programming Interface                                   |  |  |
|                                                            | Software interface for COM Express specific industrial functions             |  |  |
|                                                            | System information                                                           |  |  |
|                                                            | Watchdog timer                                                               |  |  |
|                                                            | • I2C Bus                                                                    |  |  |
|                                                            | Flat Panel brightness control                                                |  |  |
|                                                            | User storage area                                                            |  |  |
|                                                            | • GPIO                                                                       |  |  |
| EEPROM Electrically Erasable Programmable Read-Only Memory |                                                                              |  |  |
| eSPI                                                       | Enhanced Serial Peripheral Interface                                         |  |  |
| Extended Module                                            | COM Express 155mm x 110mm Module form factor.                                |  |  |
| FR4                                                        | A type of fiber-glass laminate commonly used for printed circuit boards.     |  |  |
| Gb                                                         | Gigabit                                                                      |  |  |
| GBE                                                        | Gigabit Ethernet                                                             |  |  |
| GPI                                                        | General Purpose Input                                                        |  |  |
| GPIO                                                       | General Purpose Input Output                                                 |  |  |
| GPO                                                        | General Purpose Output                                                       |  |  |
| I2C                                                        | Inter Integrated Circuit – 2 wire (clock and data) signaling scheme allowing |  |  |
|                                                            | communication between integrated circuits, primarily used to read and load   |  |  |
|                                                            | register values.                                                             |  |  |
| LAN                                                        | Local Area Network                                                           |  |  |
| Legacy Device                                              | Relics from the PC-AT computer that are not in use in contemporary PC        |  |  |
|                                                            | systems: primarily the ISA bus, UART-based serial ports, parallel printer    |  |  |
|                                                            | ports, PS-2 keyboards, and mice. Definitions vary as to what constitutes a   |  |  |
|                                                            | legacy device. Some definitions include IDE as a legacy device.              |  |  |

| Term Description |                                                                             |  |  |  |
|------------------|-----------------------------------------------------------------------------|--|--|--|
| LPC              | Low Pin-Count Interface: a low speed interface used for peripheral circuits |  |  |  |
|                  | such as Super I/O controllers, which typically combine legacy-device        |  |  |  |
|                  | support into a single IC.                                                   |  |  |  |
| LS               | Least Significant                                                           |  |  |  |
| MDIO             | Management Data Input/Output, or MDIO, is a 2-wire serial bus that is used  |  |  |  |
|                  | to manage PHYs or physical layer devices in media access controllers        |  |  |  |
|                  | (MACs).                                                                     |  |  |  |
| ME               | Management Engine                                                           |  |  |  |
| Mini Module      | COM Express 84x55mm Module form factor                                      |  |  |  |
| MS               | Most Significant                                                            |  |  |  |
| NA               | Not Available                                                               |  |  |  |
| NC               | No Connect                                                                  |  |  |  |
| NC-SI            | Network Controller Sideband Interface                                       |  |  |  |
| OEM              | Original Equipment Manufacturer                                             |  |  |  |
| PC-AT            | "Personal Computer – Advanced Technology" – an IBM trademark term           |  |  |  |
|                  | used to refer to Intel x86 based personal computers in the 1990s            |  |  |  |
| PCB              | Printed Circuit Board                                                       |  |  |  |
| PCI Express      | Peripheral Component Interface Express – next-generation high speed         |  |  |  |
| PCIE             | Serialized I/O bus                                                          |  |  |  |
| PEG              | PCI Express Graphics                                                        |  |  |  |
| PHY              | Ethernet controller physical layer device                                   |  |  |  |
| Pin-out Type     | A reference to one of seven COM Express definitions for the signals that    |  |  |  |
|                  | appear on the COM Express Module connector pins.                            |  |  |  |
| Ra               | Roughness Average – a measure of surface roughness, expressed in units      |  |  |  |
|                  | of length.                                                                  |  |  |  |
| ROM              | Read Only Memory – a legacy term – often the device referred to as a        |  |  |  |
|                  | ROM can actually be written to, in a special mode. Such writable ROMs are   |  |  |  |
|                  | sometimes called Flash ROMs. BIOS is stored in ROM or Flash ROM.            |  |  |  |
| RTC              | Real Time Clock – battery backed circuit in PC-AT systems that keeps        |  |  |  |
|                  | system time and date as well as certain system setup parameters             |  |  |  |
| SAFS             | eSPI tTerm for Slave Attached Flash Sharing where the Flash component is    |  |  |  |
|                  | attached behind a BMC component.                                            |  |  |  |
| SATA             | Serial AT Attachment: serial-interface standard for hard disks              |  |  |  |
| SCSI             | Small Computer System Interface – an interface standard for high end disk   |  |  |  |
|                  | drives and other computer peripherals                                       |  |  |  |

Ħ

| Terminology                                          | Description                                                                |  |  |
|------------------------------------------------------|----------------------------------------------------------------------------|--|--|
| SDP                                                  | Software-Definable Pin                                                     |  |  |
| SGMII Serial Gigabit Media Independent Interface     |                                                                            |  |  |
| SM Bus                                               | System Management Bus                                                      |  |  |
| SO-DIMM                                              | Small Outline Dual In-line Memory Module                                   |  |  |
| SPD                                                  | Serial Presence Detect – refers to serial EEPROM on DRAMs that has         |  |  |
| DRAM Module configuration information                |                                                                            |  |  |
| SPI Serial Peripheral Interface                      |                                                                            |  |  |
| Super I/O                                            | An integrated circuit, typically interfaced via the LPC bus that provides  |  |  |
|                                                      | legacy PC I/O functions including PS2 keyboard and mouse ports, serial and |  |  |
|                                                      | parallel port(s) and a floppy interface.                                   |  |  |
| ТРМ                                                  | Trusted Platform Module, chip to enhance the security features of a        |  |  |
|                                                      | computer system.                                                           |  |  |
| USB Universal Serial Bus                             |                                                                            |  |  |
| WDT                                                  | Watch Dog Timer.                                                           |  |  |
| XAUI 10 Gigabit / sec Attachment Unit Interface.     |                                                                            |  |  |
| XGMII         10 Gigabit Media Independent Interface |                                                                            |  |  |

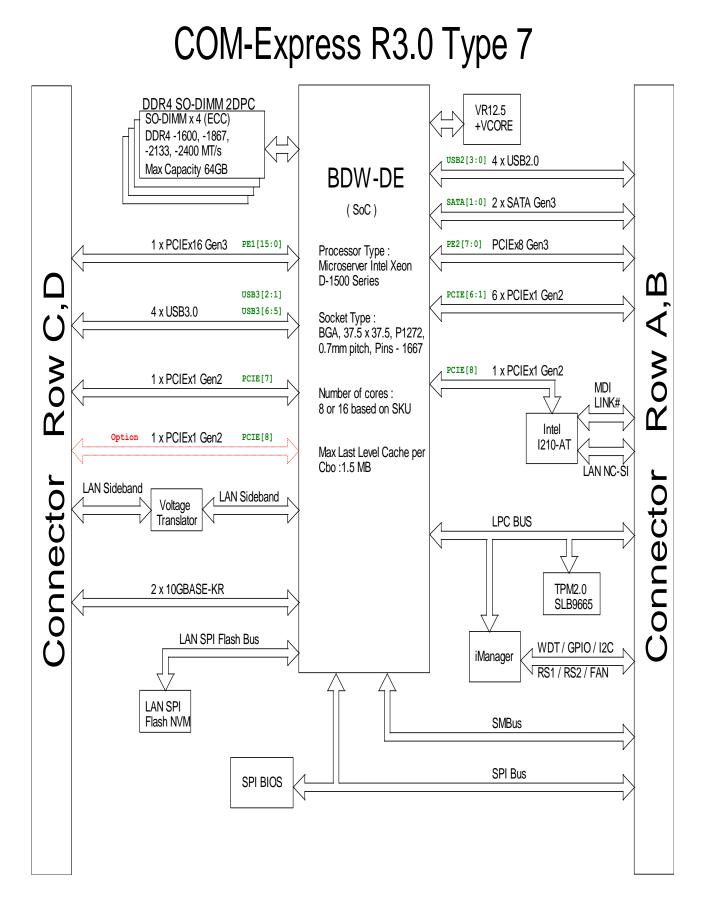
#### 1.3 Reference Documents

Document

PICMGR COM.0 Revision 3.0 COM Express Base Specification, 2017'03'31 Final

Intel EDS Document

Intel Layout Guide Document


ATX12V Power Supply Design Guide Rev. 2.01

#### 1.4 Revision History

| Revision | Date        | PCB Rev. | Changes                                               |
|----------|-------------|----------|-------------------------------------------------------|
| 0.10     | 2017'02'14  | A101-1   |                                                       |
| 1.00     | 2017'10'02  | A101-2   | 1. Change NC-SI interface connection from 10G to GbE0 |
|          |             |          | & add GbE0 SDP Pin connection to B2B Conn.            |
|          |             |          | 2. Remove 10GB NC-SI connection to B2B Conn.          |
| 1.10     | 2018'03'02  | A101-2   | 1. Modify AC coupling cap of the PCIe BUS.            |
| 1.20     | 09 25, 2018 | A101-2   | 1. Modify LPC Clock output to 24MHz.                  |
|          |             |          |                                                       |
|          |             |          |                                                       |
|          |             |          |                                                       |

#### 1.5 SOM-5992 Block Diagram

Figure 1: SOM-5992 Block Diagram



#### 1.6 Module Pin-out Types 7 - Required and Optional Features

COM Express Required and Optional features are summarized in the following table. The features identified as Minimum (Min.) *shall* be implemented by all Modules. Features identified up to Maximum (Max) *may* be additionally implemented by a Module.

| Feature                          | Type 7 Min / Max | SOM-5992 |
|----------------------------------|------------------|----------|
| System I/O                       |                  |          |
| PCI Express Lanes 0 - 5          | 6 / 6            | 6        |
| PCI Express Lanes 6 - 15         | 0 / 10           | 10       |
| PCI Express Lanes 16 - 31        | 0 / 16           | 16       |
| 10G LAN Ports 0 - 3              | 0 / 4            | 2        |
| NC-SI                            | 0 / 1            | 1        |
| 1Gb LAN Port 0                   | 1 / 1            | 1        |
| Serial Ports 1 - 2               | 0/2              | 2        |
| CAN interface on SER1            | 0 / 1            | 0        |
| SATA Ports                       | 0/2              | 2        |
| USB 2.0 Ports                    | 4 / 4            | 4        |
| USB0 Client                      | 0 / 1            | 0        |
| USB 3.0 Ports                    | 0 / 4            | 4        |
| LPC Bus or eSPI                  | 1 / 1            | 1        |
| SPI (Devices)                    | 1/2              | 2        |
| Rapid Shutdown                   | 0 / 1            | 0        |
| System Management                |                  |          |
| SDIO (muxed on GPIO)             | 0 / 1            | 0        |
| General Purpose I/O              | 8 / 8            | 8        |
| SMBus                            | 1 / 1            | 1        |
| I2C                              | 1 / 1            | 1        |
| Watchdog Timer                   | 0 / 1            | 1        |
| Speaker Out                      | 1 / 1            | 1        |
| Carrier Board BIOS Flash Support | 0 / 1            | 1        |
| Reset Functions                  | 1 / 1            | 1        |
| Trusted Platform Module          | 0 / 1            | 1        |
| Power Management                 |                  |          |
| Thermal Protection               | 0 / 1            | 1        |
| Battery Low Alarm                | 0 / 1            | 1        |
| Suspend/Wake Signals             | 0/3              | 2        |
| Power Button Support             | 1/1              | 1        |

Table 2: Module Pin-out - Required and Optional Features

|  |  | = |  | = | = |  |
|--|--|---|--|---|---|--|

| Feature                   | Type 7 Min / Max | SOM-5992 |
|---------------------------|------------------|----------|
| Power Good                | 1 / 1            | 1        |
| VCC_5V_SBY Contacts       | 4 / 4            | 4        |
| Sleep Input               | 0 / 1            | 1        |
| Lid Input                 | 0 / 1            | 1        |
| Carrier Board Fan Control | 0 / 1            | 1        |
| Power                     |                  |          |
| VCC_12V Contacts          | 24 / 24          | 24       |

2 COM Express Type 7 Interfaces

#### 2.1 COM Express Type 7 Connector Layout

Figure 2: COM Express Type7 Connector Layout

NA



Table 3: COM Express Type 7 Pin-out

| Pin# | Type 7 Description | SOM-5992   | Pin# | Type 7 Description     | SOM-5992   |
|------|--------------------|------------|------|------------------------|------------|
|      |                    | Difference |      |                        | Difference |
| A1   | GND(FIXED)         |            | B1   | GND(FIXED)             |            |
| A2   | GBE0_MDI3-         |            | B2   | GBE0_ACT#              |            |
| A3   | GBE0_MDI3+         |            | B3   | LPC_FRAME#/ESPI_CS0#   | LPC_FRAME# |
| A4   | GBE0_LINK100#      |            | B4   | LPC_AD0/ESPI_CS0       | LPC_AD0    |
| A5   | GBE0_LINK1000#     |            | B5   | LPC_AD1/ESPI_CS1       | LPC_AD1    |
| A6   | GBE0_MDI2-         |            | B6   | LPC_AD2/ESPI_CS2       | LPC_AD2    |
| A7   | GBE0_MDI2+         |            | B7   | LPC_AD3/ESPI_CS3       | LPC_AD3    |
| A8   | GBE0_LINK#         |            | B8   | LPC_DRQ0#/ESPI_ALERT0# | LPC_DRQ0#  |
| A9   | GBE0_MDI1-         |            | B9   | LPC_DRQ1#/ESPI_ALERT1# | LPC_DRQ1#  |
| A10  | GBE0_MDI1+         |            | B10  | LPC_CLK/ESPI_CK        | LPC_CLK    |
| A11  | GND(FIXED)         |            | B11  | GND(FIXED)             |            |
| A12  | GBE0_MDI0-         |            | B12  | PWRBTN#                |            |
| A13  | GBE0_MDI0+         |            | B13  | SMB_CK                 |            |
| A14  | GBE0_CTREF         | NC         | B14  | SMB_DAT                |            |
| A15  | SUS_S3#            |            | B15  | SMB_ALERT#             |            |
| A16  | SATA0_TX+          |            | B16  | SATA1_TX+              |            |
| A17  | SATA0_TX           |            | B17  | SATA1_TX               |            |
| A18  | SUS_S4#            |            | B18  | SUS_STAT#/ESPI_RESET#  | SUS_STAT#  |
| A19  | SATA0_RX+          |            | B19  | SATA1_RX+              |            |
| A20  | SATA0_RX           |            | B20  | SATA1_RX-              |            |
| A21  | GND(FIXED)         |            | B21  | GND(FIXED)             |            |
| A22  | PCIE_TX15+         |            | B22  | PCIE_RX15+             |            |
| A23  | PCIE_TX15-         |            | B23  | PCIE_RX15-             |            |
| A24  | SUS_S5#            | SUS_S4#    | B24  | PWR_OK                 |            |
| A25  | PCIE_TX14+         |            | B25  | PCIE_RX14+             |            |
| A26  | PCIE_TX14-         |            | B26  | PCIE_RX14-             |            |
| A27  | BATLOW#            |            | B27  | WDT                    |            |
| A28  | (S)ATA_ACT#        |            | B28  | RSVD                   |            |
| A29  | RSVD               |            | B29  | RSVD                   |            |
| A30  | RSVD               |            | B30  | RSVD                   |            |
| A31  | GND(FIXED)         |            | B31  | GND(FIXED)             |            |
| A32  | RSVD               |            | B32  | SPKR                   |            |



| Pin# | Type 7 Description   | SOM-5992   | Pin# | Type 7 Description | SOM-5992   |
|------|----------------------|------------|------|--------------------|------------|
|      |                      | Difference |      |                    | Difference |
| A33  | RSVD                 |            | B33  | I2C_CK             |            |
| A34  | BIOS_DIS0#/ESPI_SAFS | BIOS_DIS0# | B34  | I2C_DAT            |            |
| A35  | THRMTRIP#            |            | B35  | THRM#              |            |
| A36  | PCIE_TX13+           |            | B36  | PCIE_RX13+         |            |
| A37  | PCIE_TX13-           |            | B37  | PCIE_RX13-         |            |
| A38  | GND                  |            | B38  | GND                |            |
| A39  | PCIE_TX12+           |            | B39  | PCIE_RX12+         |            |
| A40  | PCIE_TX12-           |            | B40  | PCIE_RX12-         |            |
| A41  | GND(FIXED)           |            | B41  | GND(FIXED)         |            |
| A42  | USB2-                |            | B42  | USB3-              |            |
| A43  | USB2+                |            | B43  | USB3+              |            |
| A44  | USB_2_3_OC#          |            | B44  | USB_0_1_OC#        |            |
| A45  | USB0-                |            | B45  | USB1-              |            |
| A46  | USB0+                |            | B46  | USB1+              |            |
| A47  | VCC_RTC              |            | B47  | ESPI_EN#           | NC         |
| A48  | RSVD                 |            | B48  | USB0_HOST_PRSNT    | NC         |
| A49  | GBE0_SDP             |            | B49  | SYS_RESET#         |            |
| A50  | LPC_SERIRQ/ESPI_CS1# | LPC_SERIRQ | B50  | CB_RESET#          |            |
| A51  | GND(FIXED)           |            | B51  | GND(FIXED)         |            |
| A52  | PCIE_TX5+            |            | B52  | PCIE_RX5+          |            |
| A53  | PCIE_TX5-            |            | B53  | PCIE_RX5-          |            |
| A54  | GPI0                 |            | B54  | GPO1               |            |
| A55  | PCIE_TX4+            |            | B55  | PCIE_RX4+          |            |
| A56  | PCIE_TX4-            |            | B56  | PCIE_RX4-          |            |
| A57  | GND                  |            | B57  | GPO2               |            |
| A58  | PCIE_TX3+            |            | B58  | PCIE_RX3+          |            |
| A59  | PCIE_TX3-            |            | B59  | PCIE_RX3-          |            |
| A60  | GND(FIXED)           |            | B60  | GND(FIXED)         |            |
| A61  | PCIE_TX2+            |            | B61  | PCIE_RX2+          |            |
| A62  | PCIE_TX2-            |            | B62  | PCIE_RX2-          |            |
| A63  | GPI1                 |            | B63  | GPO3               |            |
| A64  | PCIE_TX1+            |            | B64  | PCIE_RX1+          |            |
| A65  | PCIE_TX1-            |            | B65  | PCIE_RX1-          |            |
| A66  | GND                  |            | B66  | WAKE0#             |            |
| A67  | GPI2                 |            | B67  | WAKE1#             |            |



| Pin# | Type 7 Description | SOM-5992   | Pin# | Type 7 Description | SOM-5992   |
|------|--------------------|------------|------|--------------------|------------|
|      |                    | Difference |      |                    | Difference |
| A68  | PCIE_TX0+          |            | B68  | PCIE_RX0+          |            |
| A69  | PCIE_TX0-          |            | B69  | PCIE_RX0-          |            |
| A70  | GND(FIXED)         |            | B70  | GND(FIXED)         |            |
| A71  | PCIE_TX8+          |            | B71  | PCIE_RX8+          |            |
| A72  | PCIE_TX8-          |            | B72  | PCIE_RX8-          |            |
| A73  | GND                |            | B73  | GND                |            |
| A74  | PCIE_TX9+          |            | B74  | PCIE_RX9+          |            |
| A75  | PCIE_TX9-          |            | B75  | PCIE_RX9-          |            |
| A76  | GND                |            | B76  | GND                |            |
| A77  | PCIE_TX10+         |            | B77  | PCIE_RX10+         |            |
| A78  | PCIE_TX10-         |            | B78  | PCIE_RX10-         |            |
| A79  | GND                |            | B79  | GND                |            |
| A80  | GND(FIXED)         |            | B80  | GND(FIXED)         |            |
| A81  | PCIE_TX11+         |            | B81  | PCIE_RX11+         |            |
| A82  | PCIE_TX11-         |            | B82  | PCIE_RX11-         |            |
| A83  | GND                |            | B83  | GND                |            |
| A84  | NCSI_TX_EN         |            | B84  | VCC_5V_SBY         |            |
| A85  | GPI3               |            | B85  | VCC_5V_SBY         |            |
| A86  | RSVD               |            | B86  | VCC_5V_SBY         |            |
| A87  | RSVD               |            | B87  | VCC_5V_SBY         |            |
| A88  | PCIE_CLK_REF+      |            | B88  | BIOS_DIS1#         |            |
| A89  | PCIE_CLK_REF-      |            | B89  | NCSI_RX_ER         |            |
| A90  | GND(FIXED)         |            | B90  | GND(FIXED)         |            |
| A91  | SPI_POWER          |            | B91  | NCSI_CLK_IN        |            |
| A92  | SPI_MISO           |            | B92  | NCSI_RXD1          |            |
| A93  | GPO0               |            | B93  | NCSI_RXD0          |            |
| A94  | SPI_CLK            |            | B94  | NCSI_CRS_DV        |            |
| A95  | SPI_MOSI           |            | B95  | NCSI_TXD1          |            |
| A96  | TPM_PP             |            | B96  | NCSI_TXD0          |            |
| A97  | TYPE10#            | NC         | B97  | SPI_CS#            |            |
| A98  | SER0_TX            |            | B98  | NCSI_ARB_IN        |            |
| A99  | SER0_RX            |            | B99  | NCSI_ARB_OUT       |            |
| A100 | GND(FIXED)         |            | B100 | GND(FIXED)         |            |
| A101 | SER1_TX/CAN_TX     | SER1_TX    | B101 | FAN_PWMOUT         |            |
| A102 | SER1_RX/CAN_RX     | SER1_RX    | B102 | FAN_TACHIN         |            |



| Pin# | Type 7 Description | SOM-5992<br>Difference | Pin# | Type 7 Description | SOM-5992<br>Difference |
|------|--------------------|------------------------|------|--------------------|------------------------|
|      |                    | Difference             |      |                    | Difference             |
| A103 | LID#               |                        | B103 | SLEEP#             |                        |
| A104 | VCC_12V            |                        | B104 | VCC_12V            |                        |
| A105 | VCC_12V            |                        | B105 | VCC_12V            |                        |
| A106 | VCC_12V            |                        | B106 | VCC_12V            |                        |
| A107 | VCC_12V            |                        | B107 | VCC_12V            |                        |
| A108 | VCC_12V            |                        | B108 | VCC_12V            |                        |
| A109 | VCC_12V            |                        | B109 | VCC_12V            |                        |
| A110 | GND(FIXED)         |                        | B110 | GND(FIXED)         |                        |



| Pin# | Type 7 Description | SOM-5992   | Pin# | Type 7 Description | SOM-5992   |
|------|--------------------|------------|------|--------------------|------------|
|      |                    | Difference |      |                    | Difference |
| C1   | GND(FIXED)         |            | D1   | GND(FIXED)         |            |
| C2   | GND                |            | D2   | GND                |            |
| C3   | USB_SSRX0-         |            | D3   | USB_SSTX0-         |            |
| C4   | USB_SSRX0+         |            | D4   | USB_SSTX0+         |            |
| C5   | GND                |            | D5   | GND                |            |
| C6   | USB_SSRX1-         |            | D6   | USB_SSTX1-         |            |
| C7   | USB_SSRX1+         |            | D7   | USB_SSTX1+         |            |
| C8   | GND                |            | D8   | GND                |            |
| C9   | USB_SSRX2-         |            | D9   | USB_SSTX2-         |            |
| C10  | USB_SSRX2+         |            | D10  | USB_SSTX2+         |            |
| C11  | GND(FIXED)         |            | D11  | GND(FIXED)         |            |
| C12  | USB_SSRX3-         |            | D12  | USB_SSTX3-         |            |
| C13  | USB_SSRX3+         |            | D13  | USB_SSTX3+         |            |
| C14  | GND                |            | D14  | GND                |            |
| C15  | 10G_PHY_MDC_SCL3   | NC         | D15  | 10G_PHY_MDIO_SDA3  | NC         |
| C16  | 10G_PHY_MDC_SCL2   | NC         | D16  | 10G_PHY_MDIO_SCL2  | NC         |
| C17  | 10G_SDP2           | NC         | D17  | 10G_SDP3           | NC         |
| C18  | GND                |            | D18  | GND                |            |
| C19  | PCIE_RX6+          |            | D19  | PCIE_TX6+          |            |
| C20  | PCIE_RX6-          |            | D20  | PCIE_TX6-          |            |
| C21  | GND(FIXED)         |            | D21  | GND(FIXED)         |            |
| C22  | PCIE_RX7+          |            | D22  | PCIE_TX7+          |            |
| C23  | PCIE_RX7-          |            | D23  | PCIE_TX7-          |            |
| C24  | 10G_INT2           | NC         | D24  | 10G_INT3           | NC         |
| C25  | GND                |            | D25  | GND                |            |
| C26  | 10G_KR_RX3+        | NC         | D26  | 10G_KR_TX3+        | NC         |
| C27  | 10G_KR_RX3-        | NC         | D27  | 10G_KR_TX3-        | NC         |
| C28  | GND                |            | D28  | GND                |            |
| C29  | 10G_KR_RX2+        | NC         | D29  | 10G_KR_TX2+        | NC         |
| C30  | 10G_KR_RX2-        | NC         | D30  | 10G_KR_TX2-        | NC         |
| C31  | GND(FIXED)         |            | D31  | GND(FIXED)         |            |
| C32  | 10G_SFP_SDA3       | NC         | D32  | 10G_SFP_SCL3       | NC         |
| C33  | 10G_SFP_SDA2       | NC         | D33  | 10G_SFP_SCL2       | NC         |
| C34  | 10G_PHY_RST_23     | NC         | D34  | 10G_PHY_CAP_23     | NC         |
| C35  | 10G_PHY_RST_01     |            | D35  | 10G_PHY_CAP_01     |            |
| C36  | <br>10G_LED_SDA    |            | D36  | RSVD               |            |



| Pin# | Type 7 Description | SOM-5992   | Pin# | Type 7 Description | SOM-5992   |
|------|--------------------|------------|------|--------------------|------------|
|      |                    | Difference |      |                    | Difference |
| C37  | 10G_LED_SCL        |            | D37  | RSVD               |            |
| C38  | 10G_SFP_SDA1       |            | D38  | 10G_SFP_SCL1       |            |
| C39  | 10G_SFP_SDA0       |            | D39  | 10G_SFP_SCL0       |            |
| C40  | 10G_SDP0           |            | D40  | 10G_SDP1           |            |
| C41  | GND(FIXED)         |            | D41  | GND(FIXED)         |            |
| C42  | 10G_KR_RX1+        |            | D42  | 10G_KR_TX1+        |            |
| C43  | 10G_KR_RX1-        |            | D43  | 10G_KR_TX1-        |            |
| C44  | GND                |            | D44  | GND                |            |
| C45  | 10G_PHY_MDC_SCL1   |            | D45  | 10G_PHY_MDIO_SDA1  |            |
| C46  | 10G_PHY_MDC_SCL0   |            | D46  | 10G_PHY_MDIO_SDA0  |            |
| C47  | 10G_INT0           |            | D47  | 10G_INT1           |            |
| C48  | GND                |            | D48  | GND                |            |
| C49  | 10G_KR_RX0+        |            | D49  | 10G_KR_TX0+        |            |
| C50  | 10G_KR_RX0-        |            | D50  | 10G_KR_TX0-        |            |
| C51  | GND(FIXED)         |            | D51  | GND(FIXED)         |            |
| C52  | PCIE_RX16+         |            | D52  | PCIE_TX16+         |            |
| C53  | PCIE_RX16-         |            | D53  | PCIE_TX16-         |            |
| C54  | TYPE0#             | GND        | D54  | RSVD               |            |
| C55  | PCIE_RX17+         |            | D55  | PCIE_TX17+         |            |
| C56  | PCIE_RX17-         |            | D56  | PCIE_TX17-         |            |
| C57  | TYPE1#             | NC         | D57  | TYPE2#             | GND        |
| C58  | PCIE_RX18+         |            | D58  | PCIE_TX18+         |            |
| C59  | PCIE_RX18-         |            | D59  | PCIE_TX18          |            |
| C60  | GND(FIXED)         |            | D60  | GND(FIXED)         |            |
| C61  | PCIE_RX19+         |            | D61  | PCIE_TX19+         |            |
| C62  | PCIE_RX19-         |            | D62  | PCIE_TX19-         |            |
| C63  | RSVD               |            | D63  | RSVD               |            |
| C64  | RSVD               |            | D64  | RSVD               |            |
| C65  | PCIE_RX20+         |            | D65  | PCIE_TX20+         |            |
| C66  | PCIE_RX20-         |            | D66  | PCIE_TX20-         |            |
| C67  | RAPID_SHUTDOWN     | NC         | D67  | GND                |            |
| C68  | PCIE_RX21+         |            | D68  | PCIE_TX21+         |            |
| C69  | PCIE_RX21-         |            | D69  | PCIE_TX21-         |            |
| C70  | GND(FIXED)         |            | D70  | GND(FIXED)         |            |
| C71  | PCIE_RX22+         |            | D71  | PCIE_TX22+         |            |



| Pin# | Type 7 Description | SOM-5992<br>Difference | Pin# | Type 7 Description | SOM-5992<br>Difference |
|------|--------------------|------------------------|------|--------------------|------------------------|
| C72  | PCIE_RX22-         | Difference             | D72  | PCIE_TX22-         | Difference             |
| C73  | GND                |                        | D72  | GND                |                        |
| C74  | PCIE_RX23+         |                        | D74  | PCIE_TX23+         |                        |
| C75  | PCIE_RX23-         |                        | D74  | PCIE_TX23-         |                        |
| C76  | GND                |                        | D76  | GND                |                        |
| C77  | RSVD               |                        | D70  | RSVD               |                        |
| C78  | PCIE_RX24+         |                        | D78  | PCIE_TX24+         |                        |
| C79  | PCIE_RX24+         |                        | D79  | PCIE_TX24+         |                        |
| C80  |                    |                        | D80  |                    |                        |
|      | GND(FIXED)         |                        |      | GND(FIXED)         |                        |
| C81  | PCIE_RX25+         |                        | D81  | PCIE_TX25+         |                        |
| C82  | PCIE_RX25-         |                        | D82  | PCIE_TX25-         |                        |
| C83  | RSVD               |                        | D83  | RSVD               |                        |
| C84  | GND                |                        | D84  | GND                |                        |
| C85  | PCIE_RX26+         |                        | D85  | PCIE_TX26+         |                        |
| C86  | PCIE_RX26-         |                        | D86  | PCIE_TX26-         |                        |
| C87  | GND                |                        | D87  | GND                |                        |
| C88  | PCIE_RX27+         |                        | D88  | PCIE_TX27+         |                        |
| C89  | PCIE_RX27-         |                        | D89  | PCIE_TX27-         |                        |
| C90  | GND(FIXED)         |                        | D90  | GND(FIXED)         |                        |
| C91  | PCIE_RX28+         |                        | D91  | PCIE_TX28+         |                        |
| C92  | PCIE_RX28-         |                        | D92  | PCIE_TX28-         |                        |
| C93  | GND                |                        | D93  | GND                |                        |
| C94  | PCIE_RX29+         |                        | D94  | PCIE_TX29+         |                        |
| C95  | PCIE_RX29-         |                        | D95  | PCIE_TX29-         |                        |
| C96  | GND                |                        | D96  | GND                |                        |
| C97  | RSVD               |                        | D97  | RSVD               |                        |
| C98  | PCIE_RX30+         |                        | D98  | PCIE_TX30+         |                        |
| C99  | PCIE_RX30-         |                        | D99  | PCIE_TX30-         |                        |
| C100 | GND(FIXED)         |                        | D100 | GND(FIXED)         |                        |
| C101 | PCIE_RX31+         |                        | D101 | PCIE_TX31+         |                        |
| C102 | PCIE_RX31-         |                        | D102 | PCIE_TX31-         |                        |
| C103 | GND                |                        | D103 | GND                |                        |
| C104 | VCC_12V            |                        | D104 | VCC_12V            |                        |
| C105 | VCC_12V            |                        | D105 | VCC_12V            |                        |
| C106 | VCC_12V            |                        | D106 | VCC_12V            |                        |



| Pin# | Type 7 Description | SOM-5992<br>Difference | Pin# | Type 7 Description | SOM-5992<br>Difference |
|------|--------------------|------------------------|------|--------------------|------------------------|
| C107 | VCC_12V            |                        | D107 | VCC_12V            |                        |
| C108 | VCC_12V            |                        | D108 | VCC_12V            |                        |
| C109 | VCC_12V            |                        | D109 | VCC_12V            |                        |
| C110 | GND(FIXED)         |                        | D110 | GND(FIXED)         |                        |

#### 2.3 General Purpose PCI Express Lanes

The number of available PCI Express lanes varies with the Module Pin-out Type (refer to Section 2.3.2 'PCI Express Link Configuration '). If the Module supports off-Module x16 PCI Express Graphics, then PCI Express Lanes 16-31 *shall* be used to implement this.

#### 2.3.1 General Purpose PCIe Signal Definitions

| Signal    | Pin# | Description                                        | I/O    | Note |
|-----------|------|----------------------------------------------------|--------|------|
| PCIE_RX0+ | B68  | PCIe channel 0. Receive Input differential pair.   | I PCIE | 2    |
| PCIE_RX0- | B69  | Carrier Board:                                     |        |      |
|           |      | Device - Connect AC Coupling cap 0.1uF near        |        |      |
|           |      | COME to PCIE0 x1 device PETp/n0.                   |        |      |
|           |      | Slot - Connect to PCIE0 x1 Conn pin A16, A17       |        |      |
|           |      | PERp/n0.                                           |        |      |
|           |      | N/C if not used.                                   |        |      |
| PCIE_TX0+ | A68  | PCIe channel 0. Transmit Output differential pair. | O PCIE | 2    |
| PCIE_TX0- | A69  | Module has integrated AC Coupling Capacitor.       |        |      |
|           |      | Carrier Board:                                     |        |      |
|           |      | Device - Connect to PCIE0 x1 device PERp/n0.       |        |      |
|           |      | Slot - Connect to PCIE0 x1 Conn pin B14, B15       |        |      |
|           |      | PETp/n0.                                           |        |      |
|           |      | N/C if not used.                                   |        |      |
| PCIE_RX1+ | B64  | PCIe channel 1. Receive Input differential pair.   | I PCIE | 2    |
| PCIE_RX1- | B65  | Carrier Board:                                     |        |      |
|           |      | Device - Connect AC Coupling cap 0.1uF near to     |        |      |
|           |      | PCIE1 x1 device PETp/n0.                           |        |      |
|           |      | Slot - Connect to PCIE1 x1 Conn pin A16, A17       |        |      |
|           |      | PERp/n0.                                           |        |      |
|           |      | N/C if not used.                                   |        |      |
| PCIE_TX1+ | A64  | PCIe channel 1. Transmit Output differential pair. | O PCIE | 2    |
| PCIE_TX1- | A65  | Module has integrated AC Coupling Capacitor.       |        |      |
|           |      | Carrier Board:                                     |        |      |
|           |      | Device - Connect to PCIE1 x1 device PERp/n0.       |        |      |
|           |      | Slot - Connect to PCIE1 x1 Conn pin B14, B15       |        |      |
|           |      | PETp/n0.                                           |        |      |
|           |      | N/C if not used.                                   |        |      |

Table 4: General Purpose PCI Express Signal Descriptions

| Signal    | Pin# | Description                                        | I/O    | Note |
|-----------|------|----------------------------------------------------|--------|------|
| PCIE_RX2+ | B61  | PCIe channel 2. Receive Input differential pair.   | I PCIE | 2    |
| PCIE_RX2- | B62  | Carrier Board:                                     |        |      |
|           |      | Device - Connect AC Coupling cap 0.1uF near        |        |      |
|           |      | COME to PCIE2 x1 device PETp/n0.                   |        |      |
|           |      | Slot - Connect to PCIE2 x1 Conn pin A16, A17       |        |      |
|           |      | PERp/n0.                                           |        |      |
|           |      | N/C if not used.                                   |        |      |
| PCIE_TX2+ | A61  | PCIe channel 2. Transmit Output differential pair. | O PCIE | 2    |
| PCIE_TX2- | A62  | Module has integrated AC Coupling Capacitor.       |        |      |
|           |      | Carrier Board:                                     |        |      |
|           |      | Device - Connect to PCIE2 x1 device PERp/n0.       |        |      |
|           |      | Slot - Connect to PCIE2 x1 Conn pin B14, B15       |        |      |
|           |      | PETp/n0.                                           |        |      |
|           |      | N/C if not used.                                   |        |      |
| PCIE_RX3+ | B58  | PCIe channel 3. Receive Input differential pair.   | I PCIE | 2    |
| PCIE_RX3- | B59  | Carrier Board:                                     |        |      |
|           |      | Device - Connect AC Coupling cap 0.1uF near to     |        |      |
|           |      | PCIE3 x1 device PETp/n0.                           |        |      |
|           |      | Slot - Connect to PCIE3 x1 Conn pin A16, A17       |        |      |
|           |      | PERp/n0.                                           |        |      |
|           |      | N/C if not used.                                   |        |      |
| PCIE_TX3+ | A58  | PCIe channel 3. Transmit Output differential pair. | O PCIE | 2    |
| PCIE_TX3- | A59  | Module has integrated AC Coupling Capacitor.       |        |      |
|           |      | Carrier Board:                                     |        |      |
|           |      | Device - Connect to PCIE3 x1 device PERp/n0.       |        |      |
|           |      | Slot - Connect to PCIE3 x1 Conn pin B14, B15       |        |      |
|           |      | PETp/n0.                                           |        |      |
|           |      | N/C if not used.                                   |        |      |
| PCIE_RX4+ | B55  | PCIe channel 4. Receive Input differential pair.   | I PCIE | 2    |
| PCIE_RX4- | B56  | Carrier Board:                                     |        |      |
|           |      | Device - Connect AC Coupling cap 0.1uF near to     |        |      |
|           |      | PCIE4 x1 device PETp/n0.                           |        |      |
|           |      | Slot - Connect to PCIE4 x1 Conn pin A16, A17       |        |      |
|           |      | PERp/n0.                                           |        |      |
|           |      | N/C if not used.                                   |        |      |

| Signal    | Pin# | Description                                        | I/O    | Note |
|-----------|------|----------------------------------------------------|--------|------|
| PCIE_TX4+ | A55  | PCIe channel 4. Transmit Output differential pair. | O PCIE | 2    |
| PCIE_TX4- | A56  | Module has integrated AC Coupling Capacitor.       |        |      |
|           |      | Carrier Board:                                     |        |      |
|           |      | Device - Connect to PCIE4 x1 device PERp/n0.       |        |      |
|           |      | Slot - Connect to PCIE4 x1 Conn pin B14, B15       |        |      |
|           |      | PETp/n0.                                           |        |      |
|           |      | N/C if not used.                                   |        |      |
| PCIE_RX5+ | B52  | PCIe channel 5. Receive Input differential pair.   | I PCIE | 2    |
| PCIE_RX5- | B53  | Carrier Board:                                     |        |      |
|           |      | Device - Connect AC Coupling cap 0.1uF near to     |        |      |
|           |      | PCIE5 x1 device PETp/n0.                           |        |      |
|           |      | Slot - Connect to PCIE5 x1 Conn pin A16, A17       |        |      |
|           |      | PERp/n0.                                           |        |      |
|           |      | N/C if not used.                                   |        |      |
| PCIE_TX5+ | A52  | PCIe channel 5. Transmit Output differential pair. | O PCIE | 2    |
| PCIE_TX5- | A53  | Module has integrated AC Coupling Capacitor.       |        |      |
|           |      | Carrier Board:                                     |        |      |
|           |      | Device - Connect to PCIE5 x1 device PERp/n0.       |        |      |
|           |      | Slot - Connect to PCIE5 x1 Conn pin B14, B15       |        |      |
|           |      | PETp/n0.                                           |        |      |
|           |      | N/C if not used.                                   |        |      |
| PCIE_RX6+ | C19  | PCIe channel 6. Receive Input differential pair.   | I PCIE | 2    |
| PCIE_RX6- | C20  | Carrier Board:                                     |        |      |
|           |      | Device - Connect AC Coupling cap 0.1uF near to     |        |      |
|           |      | PCIE5 x1 device PETp/n0.                           |        |      |
|           |      | Slot - Connect to PCIE5 x1 Conn pin A16, A17       |        |      |
|           |      | PERp/n0.                                           |        |      |
|           |      | N/C if not used.                                   |        |      |
| PCIE_TX6+ | D19  | PCIe channel 6. Transmit Output differential pair. | O PCIE | 2    |
| PCIE_TX6- | D20  | Module has integrated AC Coupling Capacitor.       |        |      |
|           |      | Carrier Board:                                     |        |      |
|           |      | Device - Connect to PCIE6 x1 device PERp/n0.       |        |      |
|           |      | Slot - Connect to PCIE6 x1 Conn pin B14, B15       |        |      |
|           |      | PETp/n0.                                           |        |      |
|           |      | N/C if not used.                                   |        |      |

27 y 28

| Signal    | Pin#                                                     | Description                                        | I/O    | Note |
|-----------|----------------------------------------------------------|----------------------------------------------------|--------|------|
| PCIE_RX7+ | C22                                                      | PCIe channel 7. Receive Input differential pair.   | I PCIE | 1, 2 |
| PCIE_RX7- | C23                                                      | Carrier Board:                                     |        |      |
|           |                                                          | Device - Connect AC Coupling cap 0.1uF near to     |        |      |
|           |                                                          | PCIE6 x1 device PETp/n0.                           |        |      |
|           |                                                          | Slot - Connect to PCIE6 x1 Conn pin A16, A17       |        |      |
|           |                                                          | PERp/n0.                                           |        |      |
|           |                                                          | N/C if not used.                                   |        |      |
| PCIE_TX7+ | D22                                                      | PCle channel 7. Transmit Output differential pair. | O PCIE | 1, 2 |
| PCIE_TX7- | D23                                                      | Module has integrated AC Coupling Capacitor.       |        |      |
|           |                                                          | Carrier Board:                                     |        |      |
|           |                                                          | Device - Connect to PCIE7 x1 device PERp/n0.       |        |      |
|           |                                                          | Slot - Connect to PCIE7 x1 Conn pin B14, B15       |        |      |
|           |                                                          | PETp/n0.                                           |        |      |
|           |                                                          | N/C if not used.                                   |        |      |
| PCIE_RX8+ | X8+ B71 PCIe channel 8. Receive Input differential pair. |                                                    | I PCIE | 3    |
| PCIE_RX8- | B71                                                      | Carrier Board:                                     |        |      |
|           |                                                          | Device - Connect AC Coupling cap 0.1/0.22uF near   |        |      |
|           |                                                          | to PCIE device PETp/nX.                            |        |      |
|           |                                                          | N/C if not used.                                   |        |      |
| PCIE_TX8+ | A71                                                      | PCIe channel 8. Transmit Output differential pair. | O PCIE | 3    |
| PCIE_TX8- | A72                                                      | Module has integrated AC Coupling Capacitor.       |        |      |
|           |                                                          | Carrier Board:                                     |        |      |
|           |                                                          | Device - Connect to PCIE device PERp/nX.           |        |      |
|           |                                                          | N/C if not used.                                   |        |      |
| PCIE_RX9+ | B74                                                      | PCIe channel 9. Receive Input differential pair.   | I PCIE | 3    |
| PCIE_RX9- | B75                                                      | Carrier Board:                                     |        |      |
|           |                                                          | Device - Connect AC Coupling cap 0.1/0.22uF near   |        |      |
|           |                                                          | to PCIE device PETp/nX.                            |        |      |
|           |                                                          | N/C if not used.                                   |        |      |
| PCIE_TX9+ | A74                                                      | PCIe channel 9. Transmit Output differential pair. | O PCIE | 3    |
| PCIE_TX9- | A75                                                      | Module has integrated AC Coupling Capacitor.       |        |      |
|           |                                                          | Carrier Board:                                     |        |      |
|           |                                                          | Device - Connect to PCIE device PERp/nX.           |        |      |
|           |                                                          | N/C if not used.                                   |        |      |



| Signal     | Pin# | Description                                         | I/O    | Note |
|------------|------|-----------------------------------------------------|--------|------|
| PCIE_RX10+ | B77  | PCIe channel 10. Receive Input differential pair.   | I PCIE | 3    |
| PCIE_RX10- | B78  | Carrier Board:                                      |        |      |
|            |      | Device - Connect AC Coupling cap 0.1/0.22uF near to |        |      |
|            |      | PCIE device PETp/nX.                                |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_TX10+ | A77  | PCIe channel 10. Transmit Output differential pair. | O PCIE | 3    |
| PCIE_TX10- | A78  | Module has integrated AC Coupling Capacitor.        |        |      |
|            |      | Carrier Board:                                      |        |      |
|            |      | Device - Connect to PCIE device PERp/nX.            |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_RX11+ | B81  | PCIe channel 11. Receive Input differential pair.   | I PCIE | 3    |
| PCIE_RX11- | B82  | Carrier Board:                                      |        |      |
|            |      | Device - Connect AC Coupling cap 0.1/0.22uF near to |        |      |
|            |      | PCIE device PETp/nX.                                |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_TX11+ | A81  | PCIe channel 11. Transmit Output differential pair. | O PCIE | 3    |
| PCIE_TX11- | A82  | Module has integrated AC Coupling Capacitor.        |        |      |
|            |      | Carrier Board:                                      |        |      |
|            |      | Device - Connect to PCIE device PERp/nX.            |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_RX12+ | B39  | PCIe channel 12. Receive Input differential pair.   | I PCIE | 3    |
| PCIE_RX12- | B40  | Carrier Board:                                      |        |      |
|            |      | Device - Connect AC Coupling cap 0.1/0.22uF near to |        |      |
|            |      | PCIE device PETp/nX.                                |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_TX12+ | A39  | PCIe channel 12. Transmit Output differential pair. | O PCIE | 3    |
| PCIE_TX12- | A40  | Module has integrated AC Coupling Capacitor.        |        |      |
|            |      | Carrier Board:                                      |        |      |
|            |      | Device - Connect to PCIE device PERp/nX.            |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_RX13+ | B36  | PCIe channel 13. Receive Input differential pair.   | I PCIE | 3    |
| PCIE_RX13- | B37  | Carrier Board:                                      |        |      |
|            |      | Device - Connect AC Coupling cap 0.1/0.22uF near to |        |      |
|            |      | PCIE device PETp/nX.                                |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_TX13+ | A36  | PCIe channel 13. Transmit Output differential pair. | O PCIE | 3    |
| PCIE_TX13- | A37  | Module has integrated AC Coupling Capacitor.        |        |      |
|            |      | Carrier Board:                                      |        |      |
|            |      | Device - Connect to PCIE device PERp/nX.            |        |      |
|            |      | N/C if not used.                                    |        |      |



| Signal     | Pin# | Description                                         | I/O    | Note |
|------------|------|-----------------------------------------------------|--------|------|
| PCIE_RX14+ | B25  | PCIe channel 14. Receive Input differential pair.   | I PCIE | 3    |
| PCIE_RX14- | B26  | Carrier Board:                                      |        |      |
|            |      | Device - Connect AC Coupling cap 0.1/0.22uF near to |        |      |
|            |      | PCIE device PETp/nX.                                |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_TX14+ | A25  | PCIe channel 14. Transmit Output differential pair. | O PCIE | 3    |
| PCIE_TX14- | A26  | Module has integrated AC Coupling Capacitor.        |        |      |
|            |      | Carrier Board:                                      |        |      |
|            |      | Device - Connect to PCIE device PERp/nX.            |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_RX15+ | B22  | PCIe channel 15. Receive Input differential pair.   | I PCIE | 3    |
| PCIE_RX15- | B23  | Carrier Board:                                      |        |      |
|            |      | Device - Connect AC Coupling cap 0.1/0.22uF near to |        |      |
|            |      | PCIE device PETp/nX.                                |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_TX15+ | A22  | PCIe channel 15. Transmit Output differential pair. | O PCIE | 3    |
| PCIE_TX15- | A23  | Module has integrated AC Coupling Capacitor.        |        |      |
|            |      | Carrier Board:                                      |        |      |
|            |      | Device - Connect to PCIE device PERp/nX.            |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_RX16+ | C52  | PCIe channel 16. Receive Input differential pair.   | I PCIE | 3    |
| PCIE_RX16- | C53  | Carrier Board:                                      |        |      |
|            |      | Device - Connect AC Coupling cap 0.1/0.22uF near to |        |      |
|            |      | PCIE device PETp/nX.                                |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_TX16+ | D52  | PCIe channel 16. Transmit Output differential pair. | O PCIE | 3    |
| PCIE_TX16- | D53  | Module has integrated AC Coupling Capacitor.        |        |      |
|            |      | Carrier Board:                                      |        |      |
|            |      | Device - Connect to PCIE device PERp/nX.            |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_RX17+ | C55  | PCIe channel 17. Receive Input differential pair.   | I PCIE | 3    |
| PCIE_RX17- | C56  | Carrier Board:                                      |        |      |
|            |      | Device - Connect AC Coupling cap 0.1/0.22uF near to |        |      |
|            |      | PCIE device PETp/nX.                                |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_TX17+ | D55  | PCIe channel 17. Transmit Output differential pair. | O PCIE | 3    |
| PCIE_TX17- | D56  | Module has integrated AC Coupling Capacitor.        |        |      |
|            |      | Carrier Board:                                      |        |      |
|            |      | Device - Connect to PCIE device PERp/nX.            |        |      |
|            |      | N/C if not used.                                    |        |      |



| Signal     | Pin# | Description                                         | I/O    | Note |
|------------|------|-----------------------------------------------------|--------|------|
| PCIE_RX18+ | C58  | PCIe channel 18. Receive Input differential pair.   | I PCIE | 3    |
| PCIE_RX18- | C59  | Carrier Board:                                      |        |      |
|            |      | Device - Connect AC Coupling cap 0.1/0.22uF near to |        |      |
|            |      | PCIE device PETp/nX.                                |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_TX18+ | D58  | PCIe channel 18. Transmit Output differential pair. | O PCIE | 3    |
| PCIE_TX18- | D59  | Module has integrated AC Coupling Capacitor.        |        |      |
|            |      | Carrier Board:                                      |        |      |
|            |      | Device - Connect to PCIE device PERp/nX.            |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_RX19+ | C61  | PCIe channel 19. Receive Input differential pair.   | I PCIE | 3    |
| PCIE_RX19- | C62  | Carrier Board:                                      |        |      |
|            |      | Device - Connect AC Coupling cap 0.1/0.22uF near to |        |      |
|            |      | PCIE device PETp/nX.                                |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_TX19+ | D61  | PCIe channel 19. Transmit Output differential pair. | O PCIE | 3    |
| PCIE_TX19- | D61  | Module has integrated AC Coupling Capacitor.        |        |      |
|            |      | Carrier Board:                                      |        |      |
|            |      | Device - Connect to PCIE device PERp/nX.            |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_RX20+ | C65  | PCIe channel 20. Receive Input differential pair.   | I PCIE | 3    |
| PCIE_RX20- | C66  | Carrier Board:                                      |        |      |
|            |      | Device - Connect AC Coupling cap 0.1/0.22uF near to |        |      |
|            |      | PCIE device PETp/nX.                                |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_TX20+ | D65  | PCIe channel 20. Transmit Output differential pair. | O PCIE | 3    |
| PCIE_TX20- | D66  | Module has integrated AC Coupling Capacitor.        |        |      |
|            |      | Carrier Board:                                      |        |      |
|            |      | Device - Connect to PCIE device PERp/nX.            |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_RX21+ | C68  | PCIe channel 21. Receive Input differential pair.   | I PCIE | 3    |
| PCIE_RX21- | C69  | Carrier Board:                                      |        |      |
|            |      | Device - Connect AC Coupling cap 0.1/0.22uF near to |        |      |
|            |      | PCIE device PETp/nX.                                |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_TX21+ | D68  | PCIe channel 21. Transmit Output differential pair. | O PCIE | 3    |
| PCIE_TX21- | D69  | Module has integrated AC Coupling Capacitor.        |        |      |
|            |      | Carrier Board:                                      |        |      |
|            |      | Device - Connect to PCIE device PERp/nX.            |        |      |
|            |      | N/C if not used.                                    |        |      |



| Signal     | Pin# | Description                                         | I/O    | Note |
|------------|------|-----------------------------------------------------|--------|------|
| PCIE_RX22+ | C71  | PCIe channel 22. Receive Input differential pair.   | I PCIE | 3    |
| PCIE_RX22- | C72  | Carrier Board:                                      |        |      |
|            |      | Device - Connect AC Coupling cap 0.1/0.22uF near to |        |      |
|            |      | PCIE device PETp/nX.                                |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_TX22+ | D71  | PCIe channel 22. Transmit Output differential pair. | O PCIE | 3    |
| PCIE_TX22- | D72  | Module has integrated AC Coupling Capacitor.        |        |      |
|            |      | Carrier Board:                                      |        |      |
|            |      | Device - Connect to PCIE device PERp/nX.            |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_RX23+ | C74  | PCIe channel 23. Receive Input differential pair.   | I PCIE | 3    |
| PCIE_RX23- | C75  | Carrier Board:                                      |        |      |
|            |      | Device - Connect AC Coupling cap 0.1/0.22uF near to |        |      |
|            |      | PCIE device PETp/nX.                                |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_TX23+ | D74  | PCIe channel 23. Transmit Output differential pair. | O PCIE | 3    |
| PCIE_TX23- | D75  | Module has integrated AC Coupling Capacitor.        |        |      |
|            |      | Carrier Board:                                      |        |      |
|            |      | Device - Connect to PCIE device PERp/nX.            |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_RX24+ | C78  | PCIe channel 24. Receive Input differential pair.   | I PCIE | 3    |
| PCIE_RX24- | C79  | Carrier Board:                                      |        |      |
|            |      | Device - Connect AC Coupling cap 0.1/0.22uF near to |        |      |
|            |      | PCIE device PETp/nX.                                |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_TX24+ | D78  | PCIe channel 24. Transmit Output differential pair. | O PCIE | 3    |
| PCIE_TX24- | D79  | Module has integrated AC Coupling Capacitor.        |        |      |
|            |      | Carrier Board:                                      |        |      |
|            |      | Device - Connect to PCIE device PERp/nX.            |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_RX25+ | C81  | PCIe channel 25. Receive Input differential pair.   | I PCIE | 3    |
| PCIE_RX25- | C82  | Carrier Board:                                      |        |      |
|            |      | Device - Connect AC Coupling cap 0.1/0.22uF near to |        |      |
|            |      | PCIE device PETp/nX.                                |        |      |
|            |      | N/C if not used.                                    |        |      |
| PCIE_TX25+ | D81  | PCIe channel 25. Transmit Output differential pair. | O PCIE | 3    |
| PCIE_TX25- | D82  | Module has integrated AC Coupling Capacitor.        |        |      |
|            |      | Carrier Board:                                      |        |      |
|            |      | Device - Connect to PCIE device PERp/nX.            |        |      |
|            |      | N/C if not used.                                    |        |      |

#### 

| Signal     | Pin#             | Description                                         | I/O    | Note |
|------------|------------------|-----------------------------------------------------|--------|------|
| PCIE_RX26+ | C85              | PCIe channel 26. Receive Input differential pair.   | I PCIE | 3    |
| PCIE_RX26- | C86              | Carrier Board:                                      |        |      |
|            |                  | Device - Connect AC Coupling cap 0.1/0.22uF near to |        |      |
|            |                  | PCIE device PETp/nX.                                |        |      |
|            | N/C if not used. |                                                     |        |      |
| PCIE_TX26+ | D85              | PCIe channel 26. Transmit Output differential pair. | O PCIE | 3    |
| PCIE_TX26- | D86              | Module has integrated AC Coupling Capacitor.        |        |      |
|            |                  | Carrier Board:                                      |        |      |
|            |                  | Device - Connect to PCIE device PERp/nX.            |        |      |
|            |                  | N/C if not used.                                    |        |      |
| PCIE_RX27+ | C88              | PCIe channel 27. Receive Input differential pair.   | I PCIE | 3    |
| PCIE_RX27- | C89              | Carrier Board:                                      |        |      |
|            |                  | Device - Connect AC Coupling cap 0.1/0.22uF near to |        |      |
|            |                  | PCIE device PETp/nX.                                |        |      |
|            |                  | N/C if not used.                                    |        |      |
| PCIE_TX27+ | D88              | PCIe channel 27. Transmit Output differential pair. | O PCIE | 3    |
| PCIE_TX27- | D89              | Module has integrated AC Coupling Capacitor.        |        |      |
|            |                  | Carrier Board:                                      |        |      |
|            |                  | Device - Connect to PCIE device PERp/nX.            |        |      |
|            |                  | N/C if not used.                                    |        |      |
| PCIE_RX28+ | C91              | PCIe channel 28. Receive Input differential pair.   | I PCIE | 3    |
| PCIE_RX28- | C92              | Carrier Board:                                      |        |      |
|            |                  | Device - Connect AC Coupling cap 0.1/0.22uF near to |        |      |
|            |                  | PCIE device PETp/nX.                                |        |      |
|            |                  | N/C if not used.                                    |        |      |
| PCIE_TX28+ | D91              | PCIe channel 28. Transmit Output differential pair. | O PCIE | 3    |
| PCIE_TX28- | D92              | Module has integrated AC Coupling Capacitor.        |        |      |
|            |                  | Carrier Board:                                      |        |      |
|            |                  | Device - Connect to PCIE device PERp/nX.            |        |      |
|            |                  | N/C if not used.                                    |        |      |
| PCIE_RX29+ | C94              | PCIe channel 29. Receive Input differential pair.   | I PCIE | 3    |
| PCIE_RX29- | C95              | Carrier Board:                                      |        |      |
|            |                  | Device - Connect AC Coupling cap 0.1/0.22uF near to |        |      |
|            |                  | PCIE device PETp/nX.                                |        |      |
|            |                  | N/C if not used.                                    |        |      |
| PCIE_TX29+ | D94              | PCIe channel 29. Transmit Output differential pair. | O PCIE | 3    |
| PCIE_TX29- | D95              | Module has integrated AC Coupling Capacitor.        |        |      |
|            |                  | Carrier Board:                                      |        |      |
|            |                  | Device - Connect to PCIE device PERp/nX.            |        |      |
|            |                  | N/C if not used.                                    |        |      |

| Signal        | Pin# | Description                                         | I/O    | Note |
|---------------|------|-----------------------------------------------------|--------|------|
| PCIE_RX30+    | C98  | PCIe channel 30. Receive Input differential pair.   | I PCIE | 0    |
| PCIE_RX30-    | C99  | Carrier Board:                                      |        | 3    |
|               |      | Device - Connect AC Coupling cap 0.1/0.22uF near    |        |      |
|               |      | to PCIE device PETp/nX.                             |        |      |
|               |      | N/C if not used.                                    |        |      |
| PCIE_TX30+    | D98  | PCIe channel 30. Transmit Output differential pair. | O PCIE | 2    |
| PCIE_TX30-    | D99  | Module has integrated AC Coupling Capacitor.        |        | 3    |
|               |      | Carrier Board:                                      |        |      |
|               |      | Device - Connect to PCIE device PERp/nX.            |        |      |
|               |      | N/C if not used.                                    |        |      |
| PCIE_RX31+    | C101 | PCIe channel 31. Receive Input differential pair.   | I PCIE | 3    |
| PCIE_RX31-    | C102 | Carrier Board:                                      |        | 3    |
|               |      | Device - Connect AC Coupling cap 0.1/0.22uF near    |        |      |
|               |      | to PCIE device PETp/nX.                             |        |      |
|               |      | N/C if not used.                                    |        |      |
| PCIE_TX31+    | D101 | PCIe channel 31. Transmit Output differential pair. | O PCIE | 2    |
| PCIE_TX31-    | D102 | Module has integrated AC Coupling Capacitor.        |        | 3    |
|               |      | Carrier Board:                                      |        |      |
|               |      | Device - Connect to PCIE device PERp/nX.            |        |      |
|               |      | N/C if not used.                                    |        |      |
| PCIE_CLK_REF+ | A88  | PCIe Reference Clock for all COM Express PCIe       | O PCIE |      |
| PCIE_CLK_REF- | A89  | lanes, and for PEG lanes.                           |        |      |
|               |      | Carrier Board:                                      |        |      |
|               |      | Connect $0\Omega$ in series to                      |        |      |
|               |      | Device - PCIE device REFCLK+, REFCLK                |        |      |
|               |      | Slot - PCIE Conn pin A13 REFCLK+, A14               |        |      |
|               |      | REFCLK                                              |        |      |
|               |      | *Connect to PCIE Clock Buffer input to provide      |        |      |
|               |      | PCIE clocks output for more than one PCIE devices   |        |      |
|               |      | or slots.                                           |        |      |
|               |      | N/C if not used.                                    |        |      |

#### Notes:

- 1. SOM-5992 Default : I210.
- 2. Only support PCIe Gen2.
- 3. The AC Coupling cap 0.1uF is used for Gen2 and 0.22uF is used for Gen3.

#### 2.3.2 PCI Express Lane Configurations – SOM-5992 Type 7 Limitations

|     | B2B Pin    |     | Signal     | Link Width |                |    |  |
|-----|------------|-----|------------|------------|----------------|----|--|
| A68 | PCIE_TX0+  | B68 | PCIE_RX0+  |            | N/4            |    |  |
| A69 | PCIE_TX0-  | B69 | PCIE_RX0-  | PCIE1X0    | X1             |    |  |
| A64 | PCIE_TX1+  | B64 | PCIE_RX1+  |            |                |    |  |
| A65 | PCIE_TX1-  | B65 | PCIE_RX1-  | PCIE1X1    | X1             |    |  |
| A61 | PCIE_TX2+  | B61 | PCIE_RX2+  | PCIE1X2    | X1             |    |  |
| A62 | PCIE_TX2-  | B62 | PCIE_RX2-  | PUEIAZ     | ~1             |    |  |
| A58 | PCIE_TX3+  | B58 | PCIE_RX3+  | PCIE1X3    | X1             |    |  |
| A59 | PCIE_TX3-  | B59 | PCIE_RX3-  | FUEIX3     |                |    |  |
| A55 | PCIE_TX4+  | B55 | PCIE_RX4+  | PCIE1X4    | X1             |    |  |
| A56 | PCIE_TX4-  | B56 | PCIE_RX4-  | FUIE 174   |                |    |  |
| A52 | PCIE_TX5+  | B52 | PCIE_RX5+  | PCIE1X5    | X1             |    |  |
| A53 | PCIE_TX5-  | B53 | PCIE_RX5-  | F GIE 1X3  |                |    |  |
| D19 | PCIE_TX6+  | C19 | PCIE_RX6+  | PCIE1X6    | X1             |    |  |
| D20 | PCIE_TX6-  | C20 | PCIE_RX6-  |            |                |    |  |
| D22 | PCIE_TX7+  | C22 | PCIE_RX7+  |            | Default : I210 |    |  |
| D23 | PCIE_TX7-  | C23 | PCIE_RX7-  | PCIE1X7    | Option : X1    |    |  |
| A71 | PCIE_TX8+  | B71 | PCIE_RX8+  |            |                |    |  |
| A72 | PCIE_TX8-  | B72 | PCIE_RX8-  | PCIE8X0    |                |    |  |
| A74 | PCIE_TX9+  | B74 | PCIE_RX9+  | PCIE8X1    |                |    |  |
| A75 | PCIE_TX9-  | B75 | PCIE_RX9-  |            | ×4             |    |  |
| A77 | PCIE_TX10+ | B77 | PCIE_RX10+ | DOIENVO    | X4             |    |  |
| A78 | PCIE_TX10- | B78 | PCIE_RX10- | PCIE8X2    |                |    |  |
| A81 | PCIE_TX11+ | B81 | PCIE_RX11+ |            |                |    |  |
| A82 | PCIE_TX11- | B82 | PCIE_RX11- | PCIE8X3    |                | Vo |  |
| A39 | PCIE_TX12+ | B39 | PCIE_RX12+ |            |                | X8 |  |
| A40 | PCIE_TX12- | B40 | PCIE_RX12- | PCIE8X4    |                |    |  |
| A36 | PCIE_TX13+ | B36 | PCIE_RX13+ | DOIEDYC    |                |    |  |
| A37 | PCIE_TX13- | B37 | PCIE_RX13- | PCIE8X5    |                |    |  |
| A25 | PCIE_TX14+ | B25 | PCIE_RX14+ |            | X4             |    |  |
| A26 | PCIE_TX14- | B26 | PCIE_RX14- | PCIE8X6    | -              |    |  |
| A22 | PCIE_TX15+ | B22 | PCIE_RX15+ |            |                |    |  |
| A23 | PCIE_TX15- | B23 | PCIE_RX15- | PCIE8X7    |                |    |  |

#### Table 5: SOM-5992 PCI Express Lane Configurations

D99 PCIE\_TX30-

D101 PCIE\_TX31+

D102 PCIE\_TX31-

| D52 | PCIE_TX16+ | C52 | PCIE_RX16+ |           |    |           |     |
|-----|------------|-----|------------|-----------|----|-----------|-----|
| D53 | PCIE_TX16- | C53 | PCIE_RX16- | PCIE16X0  |    |           |     |
| D55 | PCIE_TX17+ | C55 | PCIE_RX17+ |           |    |           |     |
| D56 | PCIE_TX17- | C56 | PCIE_RX17- | PCIE16X1  | ×4 |           |     |
| D58 | PCIE_TX18+ | C58 | PCIE_RX18+ |           | X4 |           |     |
| D59 | PCIE_TX18- | C59 | PCIE_RX18- | PCIE16X2  |    |           |     |
| D61 | PCIE_TX19+ | C61 | PCIE_RX19+ |           |    |           |     |
| D62 | PCIE_TX19- | C62 | PCIE_RX19- | PCIE16X3  |    | VO        |     |
| D65 | PCIE_TX20+ | C65 | PCIE_RX20+ |           |    | <b>X8</b> |     |
| D66 | PCIE_TX20- | C66 | PCIE_RX20- | PCIE16X4  |    |           |     |
| D68 | PCIE_TX21+ | C68 | PCIE_RX21+ |           |    |           |     |
| D69 | PCIE_TX21- | C69 | PCIE_RX21- | PCIE16X5  | ×4 |           |     |
| D71 | PCIE_TX22+ | C71 | PCIE_RX22+ |           | X4 |           |     |
| D72 | PCIE_TX22- | C72 | PCIE_RX22- | PCIE16X6  |    |           |     |
| D74 | PCIE_TX23+ | C74 | PCIE_RX23+ |           |    |           |     |
| D75 | PCIE_TX23- | C75 | PCIE_RX23- | PCIE16X7  |    |           | V16 |
| D78 | PCIE_TX24+ | C78 | PCIE_RX24+ |           |    |           | X16 |
| D79 | PCIE_TX24- | C79 | PCIE_RX24- | PCIE16X8  |    |           |     |
| D81 | PCIE_TX25+ | C81 | PCIE_RX25+ |           |    |           |     |
| D82 | PCIE_TX25- | C82 | PCIE_RX25- | PCIE16X9  | ×4 |           |     |
| D85 | PCIE_TX26+ | C85 | PCIE_RX26+ |           | X4 |           |     |
| D86 | PCIE_TX26- | C86 | PCIE_RX26- | PCIE16X10 |    |           |     |
| D88 | PCIE_TX27+ | C88 | PCIE_RX27+ |           |    |           |     |
| D89 | PCIE_TX27- | C89 | PCIE_RX27- | PCIE16X11 |    | VO        |     |
| D91 | PCIE_TX28+ | C91 | PCIE_RX28+ |           |    | <b>X8</b> |     |
| D92 | PCIE_TX28- | C92 | PCIE_RX28- | PCIE16X12 |    |           |     |
| D94 | PCIE_TX29+ | C94 | PCIE_RX29+ |           |    |           |     |
| D95 | PCIE_TX29- | C95 | PCIE_RX29- | PCIE16X13 | ×4 |           |     |
| D98 | PCIE_TX30+ | C98 | PCIE_RX30+ | PCIE16X14 | X4 |           |     |
|     |            |     | 1          |           |    | 1         |     |

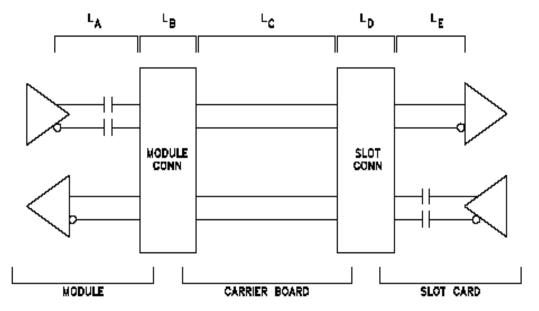
PCIE16X14

PCIE16X15

PCIE\_RX30-

C101 PCIE\_RX31+

C102 PCIE\_RX31-


C99



#### 2.3.3 PCI Express General Routing Guidelines

#### 2.3.3.1 PCI Express Insertion Loss Budget with Slot Card





The module transmit and receive insertion loss budgets are different due to the presence of the coupling caps in the module transmit path. The module transmit path insertion loss budget shall be 4.65 dB (3.46 dB + 1.19 dB). The module receive path insertion loss budget shall be 3.46 dB. COM Express connector loss is accounted for separately.

The Carrier Board transmit and receive insertion loss budgets are the same in this case. The Carrier Board insertion loss budget shall be 4.40 dB. COM Express connector and slot card connector losses are accounted for separately.

The slot card transmit and receive insertion loss budgets are different due to the presence of the coupling caps in the slot card's transmit path. The slot card's transmit path insertion loss budget is 3.84 dB (2.65 dB + 1.19 dB) per the PCI Express Card Electromechanical Specification Revision 1.1. The slot card's receive path insertion loss budget is 2.65 dB per the same specification. Slot card connector loss is accounted for separately.



| Segment        | Loss (dB)   |                                                                                 |
|----------------|-------------|---------------------------------------------------------------------------------|
|                | max. Length | Notes                                                                           |
|                | [mm/inches] |                                                                                 |
| L <sub>A</sub> | 130/5.15    | Allowance for 5.15 inches of module trace 3.45 dB loss @ 0.28 dB / GHz          |
|                |             | / inch and 1.66 dB crosstalk allowance. Coupling caps not included.             |
| Coupling       |             | 1.19 dB loss. From PCI Express Card Electromechanical Spec., Rev.               |
| Caps           |             | 1.1, parameters ( $L_{ST} - L_{SR}$ ). Includes crosstalk allowance of 0.79 dB. |
| L <sub>B</sub> |             | COM Express <sup>™</sup> connector at 1.25 GHz measured value: 0.25 dB loss.    |
| L <sub>C</sub> | 228/9.0     | Allowance for 9 inches of Carrier Board trace 4.40 db loss @ 0.28 dB /          |
|                |             | GHz / inch and a 1.25 dB crosstalk allowance.                                   |
| L <sub>D</sub> |             | 1.25 dB loss. PCI Express Card Electromechanical Spec Rev 1.1 "guard            |
|                |             | band" allowance for slot connector – includes 1.0 dB connector loss.            |
| L <sub>E</sub> |             | 2.65 dB loss. From PCI Express Card Electromechanical Spec., Rev.               |
|                |             | 1.1(without coupling caps; $L_{AR}$ ). Implied crosstalk allowance is 1.25 dB.  |
| Total          |             | 13.20 dB loss.                                                                  |

Table 6: PCI Express Insertion Loss Budget, 1.25 GHz with Carrier Board Slot Card

#### PCI Express Insertion Loss Budget, 2.5 GHz with Carrier Board Slot Card

For "device up" PCIe Gen 2 operation, the Module PCIe maximum trace length is restricted to 5.0 inches and the Carrier Board maximum trace to 4.45 inches. Shorter lengths will yield additional margin and are encouraged where possible. Results assumed FR4 dielectrics.

Other dielectrics with lower losses could be considered, but were not simulated

It can be noted that a use case exists that might result in reduced PCI Express bandwidth. This use case is tied to Carrier boards with a PCI Express slot (device up). PCI Express Gen 1 and Gen 2 signaling rates use the same PCI Express connector – there is no mechanical keying mechanism to identify the capabilities of the PCI Express slot or the PCI Express board plugged into the slot. This can lead to the situation where the Module and PCI Express board attempt a PCI Express Gen2 signaling rate connection over a Carrier that does not meet the routing guidelines for Gen 2 signaling rates. In a worst case scenario the devices might connect at Gen2 signaling rate with a high number of errors impacting the actual data throughput. It should be noted that there is a Carrier EEPROM which would allow the Module to determine the Carrier Board capabilities but this is not a requirement in COM.0.

| Segment        | max. Length<br>[mm/inches] | Notes                                                                        |
|----------------|----------------------------|------------------------------------------------------------------------------|
| L <sub>A</sub> | 127/5.0                    | Allowance for module trace. Coupling cap effects included within simulation. |
| L <sub>B</sub> |                            | COM Express™ connector simulated at 2.5 GHz.                                 |
| L <sub>C</sub> | 113/4.45                   | Allowance for Carrier Board.                                                 |
| L <sub>D</sub> |                            | PCI Express Card slot connector simulated at 2.5 GHz.                        |
| L <sub>E</sub> | 80/3.15                    | Slot Card trace length from PCI Express Card Electromagnetical Spec.,        |
|                |                            | Rev. 1.1                                                                     |
| Total          | 320/12.6                   | PCIe GEN2 Data clocked architecture                                          |

#### Table 7: PCI Express Insertion Loss Budget, 2.5 GHz with Carrier Board Slot Card

#### 2.3.3.2 PCI Express Insertion Loss Budget with Carrier Board PCIE Device

The insertion losses previously allowed for the slot card and slot card connector are reallocated for use on the Carrier Board, allowing longer Carrier Board trace lengths and more Carrier Board design flexibility. The Module and COM Express connector loss budgets remain the same.

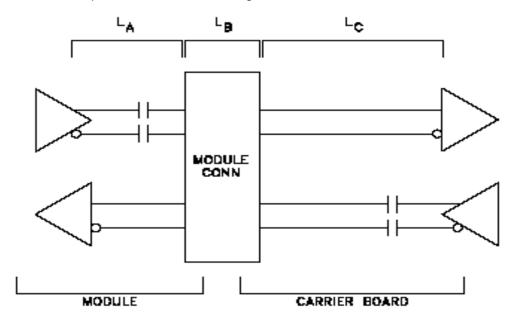


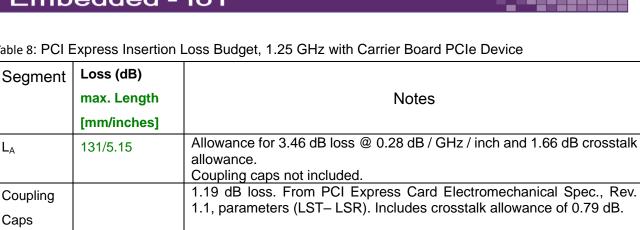

Figure 4: PCI Express Insertion Loss Budget with Carrier Board PCIe Device

The module transmit and receive insertion loss budgets are different due to the presence of the coupling caps in the module transmit path. The module transmit path insertion loss budget shall be 4.65 dB (3.46 dB + 1.19 dB). The module receive path insertion loss budget shall be 3.46 dB. COM ExpressTM connector loss is accounted for separately.

The Carrier Board transmit and receive insertion loss budgets are different due to the presence of the coupling caps in the Carrier Board transmit path. The Carrier Board transmit path insertion loss budget shall be 9.49 dB (8.30 dB + 1.19 dB). The Carrier Board receive path insertion loss shall be 8.30 dB. COM Express connector loss is accounted for separately.

402/15.85

13.2


 $\mathsf{L}_\mathsf{A}$ 

Caps

L<sub>B</sub>

L<sub>C</sub>

Total



COM Express connector at 1.25 GHz measured value: 0.25 dB loss.

Allowance for 8.30 dB loss @ 0.28 dB / GHz / inch and a 2.75 dB

#### Table 8: PCI Express Insertion Loss Budget, 1.25 GHz with Carrier Board PCIe Device

#### PCI Express Insertion Loss Budget, 2.5 GHz with Carrier Board PCIE Device

13.2dB loss

crosstalk allowance ...

For "device down" PCIe Gen 2 operation, the Module PCIe maximum trace length is restricted to 5.0 inches and the Carrier Board maximum trace to 8.0 inches. Shorter lengths will yield additional margin and are encouraged where possible. Results assumed FR4 dielectrics. Other dielectrics with lower losses could be considered, but were not simulated.

#### Table 9: PCI Express Insertion Loss Budget, 2.5 GHz with Carrier Board PCIe Device

| Segment        | max. Length<br>[mm/inches] | Notes                                                                        |  |
|----------------|----------------------------|------------------------------------------------------------------------------|--|
| L <sub>A</sub> | 127/5                      | Allowance for module trace. Coupling cap effects included within simulation. |  |
| L <sub>B</sub> |                            | COM Express™ connector simulated at 2.5 GHz.                                 |  |
| L <sub>C</sub> | 203/8                      | Allowance for Carrier Board trace.                                           |  |
| Total          | 330/13.0                   | PCIe GEN2 Data clocked architecture                                          |  |

## 2.3.4 PCI Express Trace Length Guidelines

Figure 5: Topology for PCI Express Slot Card.

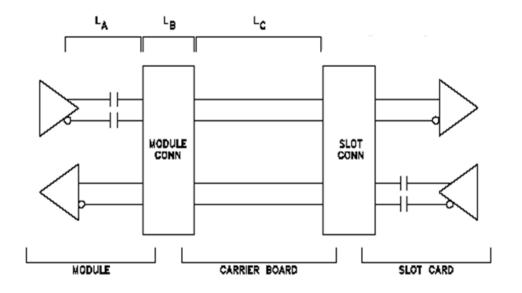
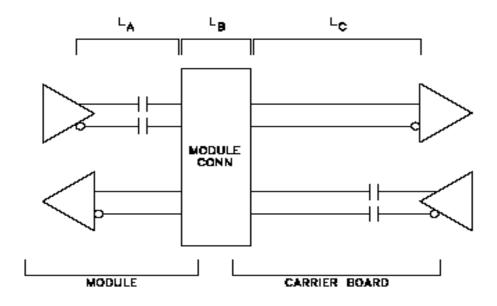




Figure 6: Topology for PCI Express Device Down.



| Parameter                        | Main Route Guidelines                              | Notes |
|----------------------------------|----------------------------------------------------|-------|
| Signal Group                     | PCI Express* expansion                             |       |
| Differential Impedance Target    | 85Ω±10%                                            |       |
| Single End                       | 55Ω±10%                                            |       |
| Isolation to equivalent pairs    | 11H (MS) and 3H(DS)                                | 1,2   |
| Isolation to other signal groups | 11H (MS) and 5H (DS)                               | 1     |
| Tx/Rx Spacing                    | 11H(MS) and 5H (DS)                                | 1     |
| LA + LB                          | Please see the SOM-5992 Layout Checklist           |       |
| Lc                               | Carrier Board Length                               |       |
| Max length of LA+LB+LC           | Slot Card: 14"                                     |       |
|                                  | Device Down:4~ 16"                                 |       |
| Length matching                  | Differential pairs (intra-pair): Max. 2 mils       |       |
|                                  | REFCLK+ and REFCLK- (intra-pair):Max. 5mils        |       |
| Reference Plane                  | GND referencing preferred                          |       |
|                                  | Min 40-mil trace edge-to-major plane edge spacing  |       |
|                                  | GND stitching vias required next to signal vias if |       |
|                                  | transitioning layers between GND layers            |       |
|                                  | Power referencing acceptable if stitching caps are |       |
|                                  | used                                               |       |
| Carrier Board Via Usage          | Max. 2 vias per TX                                 |       |
|                                  | Max. 4 vias per RX (to device)                     |       |
|                                  | Max. 2 vias per RX (to slot)                       |       |
| AC coupling                      | The AC coupling capacitors for the TX lines are    | 3     |
|                                  | incorporated on the COM Express Module. The AC     |       |
|                                  | coupling capacitors for RX signal lines have to be |       |
|                                  | implemented on the customer COM Express Carrier    |       |
|                                  | Board. Capacitor type: X7R, 100nF ±10%, 16V, shape |       |
|                                  | 0402.                                              |       |

Table 10: PCI Express\* Slot Card / Device Down Trace Length Guidelines

Notes:

- 1. H is height above reference plane.
- 2. Equivalent pairs are TX to TX or RX to RX(Noninterleaved)
- 3. AC caps are recommended to be placed close to PCIe device side (avoid placing AC cpas on mid-bus).



## 2.4 NC-SI

#### 2.4.1 NC-SI Signal Definitions

The NC-SI ('Network Controller Sideband Interface') is an electrical interface and protocol defined by the Distributed Management Task Force (DMTF), which enables the connection of a BMC (Baseboard Management Controller) to enable out-of-band remote manageability.

If implemented, the NC-SI *shall* be assigned to the **GBE0** interface. NC-SI architecture also enables multiple endpoints to be connected to the same management controller.

In this configuration, the bus arbitration can also be implemented by hardware using a token ring configuration. The NCSI\_ARB\_IN pin of one controller must be connected to the NCSI\_ARB\_OUT of another controller to form a ring configuration. A maximum of four network controllers can be connected in this manner and all controllers sharing the same NC-SI interface pins must support this feature in order to use hardware-based arbitration. NCSI\_ARB\_IN and NCSI\_ARB\_OUT are to be left unconnected on the Carrier if there is no Carrier network controller.

| Pin# | Description                                      | I/O                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Notes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| B91  | NC-SI Clock reference for receive, transmit, and | I COM                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | control interface.                               | 3.3V Suspend /                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| B93  | NC-SI Receive Data (from NC to BMC).             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| B92  | NC-SI Receive Data (from NC to BMC).             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| B96  | NC-SI Transmit Data (from BMC to NC).            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                  | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| B95  | NC-SI Transmit Data (from BMC to NC).            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| B94  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 101  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| A84  | NC-SI Transmit enable.                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| DOO  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| B89  | NC-SI Receive error.                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      |                                                  | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| BOS  | NC-SI hardware arbitration input                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| D90  | •                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | N/C if not used.                                 | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| B99  | NC-SI hardware arbitration output                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 000  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | N/C If not used.                                 | 3.3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|      | B91                                              | B91NC-SI Clock reference for receive, transmit, and<br>control interface.B93NC-SI Receive Data (from NC to BMC).B92NC-SI Receive Data (from NC to BMC).B96NC-SI Transmit Data (from BMC to NC).B95NC-SI Transmit Data (from BMC to NC).B94NC-SI Carrier Sense/Receive Data Valid to MC,<br>indicating that the transmitted data from NC to<br>BMC is valid.A84NC-SI Transmit enable.B98NC-SI Receive error.B98NC-SI hardware arbitration input.<br>N/C if not used. | B91       NC-SI Clock reference for receive, transmit, and control interface.       I COM         B93       NC-SI Receive Data (from NC to BMC).       O COM         B92       NC-SI Receive Data (from NC to BMC).       O COM         B92       NC-SI Receive Data (from NC to BMC).       O COM         B94       NC-SI Transmit Data (from BMC to NC).       I COM         B94       NC-SI Carrier Sense/Receive Data Valid to MC, indicating that the transmitted data from NC to BMC is valid.       I COM         A84       NC-SI Transmit enable.       I COM         B89       NC-SI Receive error.       O COM         B89       NC-SI hardware arbitration input.       I COM         N/C if not used.       3.3V         B99       NC-SI hardware arbitration output.       O COM         N/C if not used.       3.3V         B99       NC-SI hardware arbitration output.       O COM         N/C if not used.       3.3V         B99       NC-SI hardware arbitration output.       O COM |

#### Table 11: NC-SI Signal Description

Notes:

## 2.4.2 NC-SI General Routing Guidelines

NA

#### 2.4.3 NC-SI Trace Length Guidelines

Figure 7: Topology for NC-SI.

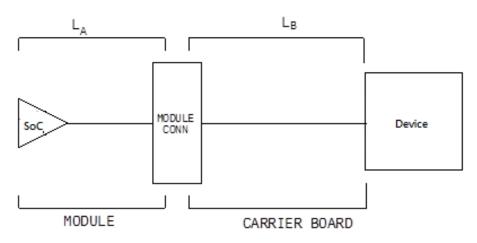



Table 12: NC-SI Trace Length Guidelines

| Parameter                      | Main Route Guidelines                    | Notes |
|--------------------------------|------------------------------------------|-------|
| Signal Group                   | NC-SI                                    |       |
| Single End                     | 50Ω ±10%                                 |       |
| Nominal Trace Space within LPC | 3Н                                       |       |
| Signal Group                   |                                          |       |
| Spacing to Other Signal Group  | 3Н                                       |       |
| LA                             | Please see the SOM-5992 Layout Checklist |       |
| LB                             | Carrier Board Length                     |       |
| Max length of LA+LB            | 8.5" Single source                       |       |
| Length matching between single | NA                                       |       |
| ended signals                  |                                          |       |
| Length matching between clock  | NA                                       |       |
| signals                        |                                          |       |
| Reference Plane                | GND referencing preferred.               |       |
| Via Usage                      | Try to minimize number of vias           |       |

Notes:

1.H is height above reference plane.

#### 2.5 10GB Ethernet

10GBASE-KR support was added to COM Express with revision 3.0 of the specification. Type 7 supports up to four 10GBASE-KR interfaces. The 10G MAC is located on the Module and the PHY is located on the Carrier. 10GBASE-KR uses a single transmit and a single receive ac coupled differential pair for data and a sideband bus for the PHY control and configuration. COM Express supports both MDIO and I2C control interfaces for the PHY.

The PHY control interfaces are grouped into pairs. 10G Ports 0 and 1 share a common PHY control interface and 10G ports 2 and 3 share a common PHY control interface. The PHY interface selection is made using the 10G\_PHY\_CAP\_01 and 10G\_PHY\_CAP\_23 pins. The Carrier design can select the PHY that is appropriate for the design. The Module designer **should** design the module in such a way that it can provide the PHY interface that is selected regardless of the capabilities of the silicon used on the Module. Appropriate level shifters **shall** be used.

A two wire I2C bus (designated 10G\_LED\_SDA and 10G\_LED\_SCL) is defined to serialize the outbound (Module to Carrier) MAC LED and PHY strapping signals, conserving COM Express pins. The Carrier **should** use a PCA9539 or compatible I2C I/O expander. The Carrier PCA9539 **shall** be mapped to I2C address 1110 100x (x=R/W bit). Table 14 below defines the port pin mapping for the I/O expander.

There are two pairs of PHY strapping signals defined. The first pair is designated as 10G\_PHY\_CAP\_01 and 10G\_PHY\_CAP\_23. These are actual COM Express pins. They are inputs to the COM Express Module. The Carrier *may* either tie these lines to GND or leave them NC on the Carrier. If 10G\_PHY\_CAP\_01 is tied low on the Carrier, this indicates to the Module that the PHY on the Carrier for 10G interfaces 0 and 1 can be configured by either I2C or by MDIO. If the Carrier leaves the line NC, then this indicates to the Module that the Carrier PHY can only be configured by MDIO. Similarly for strap signal 10G\_PHY\_CAP\_23 and 10G interfaces 2 and 3.

The second pair of PHY strapping signals are outputs from the Module, serialized onto the 10G\_LED\_Sxx I2C bus. They are desterilized on the Carrier I/O expander and *may* used to set Carrier PHY strapping pins to set the desired Carrier PHY configuration mode, if the PHY is capable of multiple configuration modes.

This arrangement with a pair of input straps (telling the Module what configuration modes are possible on the Carrier PHY) and a pair of serialized output straps (telling the Carrier PHY what configuration mode to use) allow Module designs that can use a variety of PHYs. In particular, Intel Broadwell DE Modules that can be used with either Intel "Coppervale" PHYs or with Inphy / Cortina PHYs can be realized. Block diagram examples may be found in 2.5.2 'Example 10 GB Ethernet Designs' of this document.

## 2.5.1 10GB LAN Signal Definitions

Table 13: 10GB LAN Signal Description

| Signal      | Pin# | Description                                          | I/O  | Notes |
|-------------|------|------------------------------------------------------|------|-------|
| 10G_KR_TX0+ | D49  | 10GBASE-KR port, transmit output differential pairs. | 0 KR |       |
| 10G_KR_TX0- | D50  | Carrier board:                                       |      |       |
|             |      | Device - Connect AC Coupling cap 0.1uF near PHY.     |      |       |
|             |      | N/C if not used.                                     |      |       |
| 10G_KR_RX0+ | C49  | 10GBASE-KR port, receive input differential pairs.   | I KR |       |
| 10G_KR_RX0- | C50  | Module has integrated AC Coupling Capacitor.         |      |       |
|             |      | Carrier board:                                       |      |       |
|             |      | N/C if not used.N/C if not used.                     |      |       |
| 10G_KR_TX1+ | D42  | 10GBASE-KR port, transmit output differential pairs. | 0 KR |       |
| 10G_KR_TX1- | D43  | Carrier board:                                       |      |       |
|             |      | Device - Connect AC Coupling cap 0.1uF near PHY.     |      |       |
|             |      | N/C if not used.                                     |      |       |
| 10G_KR_RX1+ | C42  | 10GBASE-KR port, receive input differential pairs.   | I KR |       |
| 10G_KR_RX1- | C43  | Module has integrated AC Coupling Capacitor.         |      |       |
|             |      | Carrier board:                                       |      |       |
|             |      | N/C if not used.N/C if not used.                     |      |       |
| 10G_KR_TX2+ | D29  | 10GBASE-KR port, transmit output differential pairs. | 0 KR | 1     |
| 10G_KR_TX2- | D30  | Carrier board:                                       |      |       |
|             |      | Device - Connect AC Coupling cap 0.1uF near PHY.     |      |       |
|             |      | N/C if not used.                                     |      |       |
| 10G_KR_RX2+ | C29  | 10GBASE-KR port, receive input differential pairs.   | I KR | 1     |
| 10G_KR_RX2- | C30  | Module has integrated AC Coupling Capacitor.         |      |       |
|             |      | Carrier board:                                       |      |       |
|             |      | N/C if not used.N/C if not used.                     |      |       |
| 10G_KR_TX3+ | D26  | 10GBASE-KR port, transmit output differential pairs. | 0 KR | 1     |
| 10G_KR_TX3- | D27  | Carrier board:                                       |      |       |
|             |      | Device - Connect AC Coupling cap 0.1uF near PHY.     |      |       |
|             |      | N/C if not used.                                     |      |       |
| 10G_KR_RX3+ | C26  | 10GBASE-KR port, receive input differential pairs.   | I KR | 1     |
| 10G_KR_RX3- | C27  | Module has integrated AC Coupling Capacitor.         |      |       |
|             |      | Carrier board:                                       |      |       |
|             |      | N/C if not used.N/C if not used.                     |      |       |

| Signal            | Pin# | Description                                 | I/O                       | Notes |
|-------------------|------|---------------------------------------------|---------------------------|-------|
| 10G_PHY_MDIO_SDA0 | D46  | MDIO Mode: Management Data I/O interface    | OC MOS                    |       |
|                   |      | mode data signal for serial data transfers  | 3.3V<br>Suspend /<br>3.3V |       |
|                   |      | between the MAC and an external PHY.        |                           |       |
|                   |      | Carrier board:                              |                           |       |
|                   |      | Device-Connect to PHY circuit.              |                           |       |
|                   |      | N/C if not used.                            |                           |       |
|                   |      | I2C Mode: I2C data signal, of the 2-wire    | I/O OD                    |       |
|                   |      | management interface used for serial data   | CMOS<br>3.3V              |       |
|                   |      | transfers between the MAC and an external   | Suspend /                 |       |
|                   |      | PHY.                                        | 3.3V                      |       |
|                   |      | Carrier board:                              |                           |       |
|                   |      | Device-Connect to PHY circuit.              |                           |       |
|                   |      | N/C if not used.                            |                           |       |
| 10G_PHY_MDC_SCL0  | C46  | MDIO Mode: Management Data I/O Interface    | OC MOS                    |       |
|                   |      | mode clock signal for serial data transfers | 3.3V<br>Suspend /<br>3.3V |       |
|                   |      | between the MAC and an external PHY.        |                           |       |
|                   |      | Carrier board:                              |                           |       |
|                   |      | Device-Connect to PHY circuit.              |                           |       |
|                   |      | N/C if not used.                            |                           |       |
|                   |      | I2C Mode: I2C Clock signal, of the 2-wire   | I/O OD                    |       |
|                   |      | management interface used for serial data   | CMOS<br>3.3V<br>Suspend / |       |
|                   |      | transfers between the MAC and an external   |                           |       |
|                   |      | PHY.                                        | 3.3V                      |       |
|                   |      | Carrier board:                              |                           |       |
|                   |      | Device-Connect to PHY circuit.              |                           |       |
|                   |      | N/C if not used.                            |                           |       |
| 10G_PHY_MDIO_SDA1 | D45  | MDIO Mode: Management Data I/O interface    | OC MOS                    |       |
|                   |      | mode data signal for serial data transfers  | 3.3V<br>Suspend /         |       |
|                   |      | between the MAC and an external PHY.        | 3.3V                      |       |
|                   |      | Carrier board:                              |                           |       |
|                   |      | Device-Connect to PHY circuit.              |                           |       |
|                   |      | N/C if not used.                            |                           |       |
|                   |      | I2C Mode: I2C data signal, of the 2-wire    | I/O OD                    |       |
|                   |      | management interface used for serial data   | CMOS<br>3.3V              |       |
|                   |      | transfers between the MAC and an external   | Suspend /                 |       |
|                   |      | PHY.                                        | 3.3V                      |       |
|                   |      | Carrier board:                              |                           |       |
|                   |      | Device-Connect to PHY circuit.              |                           |       |
|                   |      | N/C if not used.                            |                           |       |
|                   |      | IN/C IT NOT USED.                           |                           |       |

| Embedded          | - Io | т                                           |                   |       |
|-------------------|------|---------------------------------------------|-------------------|-------|
| Signal            | Pin# | Description                                 | I/O               | Notes |
| 10G_PHY_MDC_SCL1  | C45  | MDIO Mode: Management Data I/O Interface    | OC MOS            |       |
|                   |      | mode clock signal for serial data transfers | 3.3V<br>Suspend / |       |
|                   |      | between the MAC and an external PHY.        | 3.3V              |       |
|                   |      | Carrier board:                              |                   |       |
|                   |      | Device-Connect to PHY circuit.              |                   |       |
|                   |      | N/C if not used.                            |                   |       |
|                   |      | I2C Mode: I2C Clock signal, of the 2-wire   | I/O OD            |       |
|                   |      | management interface used for serial data   | CMOS<br>3.3V      |       |
|                   |      | transfers between the MAC and an external   | Suspend /         |       |
|                   |      | PHY.                                        | 3.3V              |       |
|                   |      | Carrier board:                              |                   |       |
|                   |      | Device-Connect to PHY circuit.              |                   |       |
|                   |      | N/C if not used.                            |                   |       |
| 10G_PHY_MDIO_SDA2 | D16  | MDIO Mode: Management Data I/O interface    | OC MOS            |       |
|                   |      | mode data signal for serial data transfers  | 3.3V<br>Suspend / | 1     |
|                   |      | between the MAC and an external PHY.        | 3.3V              |       |
|                   |      | Carrier board:                              |                   |       |
|                   |      | Device-Connect to PHY circuit.              |                   |       |
|                   |      | N/C if not used.                            |                   |       |
|                   |      | I2C Mode: I2C data signal, of the 2-wire    | I/O OD            |       |
|                   |      | management interface used for serial data   | CMOS<br>3.3V      | 1     |
|                   |      | transfers between the MAC and an external   | Suspend /         |       |
|                   |      | PHY.                                        | 3.3V              |       |
|                   |      | Carrier board:                              |                   |       |
|                   |      | Device-Connect to PHY circuit.              |                   |       |
|                   |      | N/C if not used.                            |                   |       |
| 10G_PHY_MDC_SCL2  | C16  | MDIO Mode: Management Data I/O Interface    | OC MOS            | 1     |
|                   |      | mode clock signal for serial data transfers | 3.3V<br>Suspend / |       |
|                   |      | between the MAC and an external PHY.        | 3.3V              |       |
|                   |      | Carrier board:                              |                   |       |
|                   |      | Device-Connect to PHY circuit.              |                   |       |
|                   |      | N/C if not used.                            |                   |       |
|                   |      | I2C Mode: I2C Clock signal, of the 2-wire   | I/O OD            | 1     |
|                   |      | management interface used for serial data   | CMOS<br>3.3V      |       |
|                   |      | transfers between the MAC and an external   | Suspend /         |       |
|                   |      | PHY.                                        | 3.3V              |       |
|                   |      | Carrier board:                              |                   |       |
|                   |      | Device-Connect to PHY circuit.              |                   |       |
|                   |      | N/C if not used.                            |                   |       |

| Embedded          | - Io | т                                             |                   |       |
|-------------------|------|-----------------------------------------------|-------------------|-------|
| Signal            | Pin# | Description                                   | I/O               | Notes |
| 10G_PHY_MDIO_SDA3 | D15  | MDIO Mode: Management Data I/O interface      | OC MOS            | 1     |
|                   |      | mode data signal for serial data transfers    | 3.3V<br>Suspend / |       |
|                   |      | between the MAC and an external PHY.          | 3.3V              |       |
|                   |      | Carrier board:                                |                   |       |
|                   |      | Device-Connect to PHY circuit.                |                   |       |
|                   |      | N/C if not used.                              |                   |       |
|                   |      | I2C Mode: I2C data signal, of the 2-wire      | I/O OD            | 1     |
|                   |      | management interface used for serial data     | CMOS<br>3.3V      |       |
|                   |      | transfers between the MAC and an external     | Suspend /         |       |
|                   |      | PHY.                                          | 3.3V              |       |
|                   |      | Carrier board:                                |                   |       |
|                   |      | Device-Connect to PHY circuit.                |                   |       |
|                   |      | N/C if not used.                              |                   |       |
| 10G_PHY_MDC_SCL3  | C15  | MDIO Mode: Management Data I/O Interface      | OC MOS            |       |
|                   |      | mode clock signal for serial data transfers   | 3.3V<br>Suspend / | 1     |
|                   |      | between the MAC and an external PHY.          | 3.3V              |       |
|                   |      | Carrier board:                                |                   |       |
|                   |      | Device-Connect to PHY circuit.                |                   |       |
|                   |      | N/C if not used.                              |                   |       |
|                   |      | I2C Mode: I2C Clock signal, of the 2-wire     | I/O OD            |       |
|                   |      | management interface used for serial data     | CMOS<br>3.3V      | 1     |
|                   |      | transfers between the MAC and an external     | Suspend /         |       |
|                   |      | PHY.                                          | 3.3V              |       |
|                   |      | Carrier board:                                |                   |       |
|                   |      | Device-Connect to PHY circuit.                |                   |       |
|                   |      | N/C if not used.                              |                   |       |
| 10G_PHY_CAP_01    | D35  | PHY mode capability pin: Indicates if the     | I CMOS            |       |
|                   |      | PHY for 10G lanes 0 and 1 is capable of       | 3.3V<br>Suspend / |       |
|                   |      | configuration by I2C. High indicates          | 3.3V              |       |
|                   |      | MDIO-only configuration, and low indicates    |                   |       |
|                   |      | configuration capability via I2C or MDIO. The |                   |       |
|                   |      | actual protocol used for PHY configuration is |                   |       |
|                   |      | determined by the module, in part based on    |                   |       |
|                   |      | this input. The actual protocol used is       |                   |       |
|                   |      | indicated over the dedicated I2C interface    |                   |       |
|                   |      | (see Table 13)                                |                   |       |
|                   |      | Carrier board:                                |                   |       |
|                   |      |                                               |                   |       |
|                   |      |                                               |                   |       |

| Signal         | Pin# | Description                                                                                                                                                                                                                                                                                                                                                                                                                                          | I/O                                            | Notes |
|----------------|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------|
| 10G_PHY_CAP_23 | D34  | PHY mode capability pin: Indicates if the PHY<br>for 10G lanes 2 and 3 is capable of<br>configuration by I2C. High indicates MDIO-only<br>configuration, and low indicates configuration<br>capability via I2C or MDIO. The actual protocol<br>used for PHY configuration is determined by<br>the module, in part based on<br>this input. The actual protocol used is indicated<br>over the dedicated I2C interface (see Table 13)<br>Carrier board: | I CMOS<br>3.3V<br>Suspend<br>/<br>3.3V         | 1     |
| 10G_SFP_SDA0   | C39  | I2C data signal of the 2-wire management<br>interface used by the 10GbE controller to<br>access the management registers of an<br>external Optical SFP Module.<br>Carrier board:                                                                                                                                                                                                                                                                     | I/O OD<br>CMOS<br>3.3V<br>Suspend<br>/<br>3.3V |       |
| 10G_SFP_SCL0   | D39  | I2C clock signal of the 2-wire management<br>interface used by the 10GbE controller to<br>access the management registers of an<br>external Optical SFP Module.<br>Carrier board:                                                                                                                                                                                                                                                                    | I/O OD<br>CMOS<br>3.3V<br>Suspend<br>/<br>3.3V |       |
| 10G_SFP_SDA1   | C38  | I2C data signal of the 2-wire management<br>interface used by the 10GbE controller to<br>access the management registers of an<br>external Optical SFP Module.<br>Carrier board:                                                                                                                                                                                                                                                                     | I/O OD<br>CMOS<br>3.3V<br>Suspend<br>/<br>3.3V |       |
| 10G_SFP_SCL1   | D38  | I2C clock signal of the 2-wire management<br>interface used by the 10GbE controller to<br>access the management registers of an<br>external Optical SFP Module.<br>Carrier board:                                                                                                                                                                                                                                                                    | I/O OD<br>CMOS<br>3.3V<br>Suspend<br>/<br>3.3V |       |

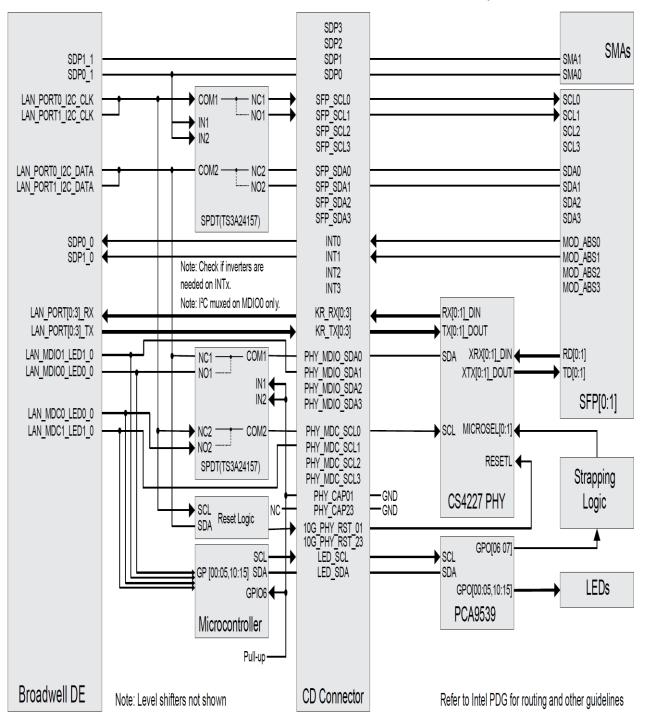
| Embedded       | - Io | т                                                                                                                                                                                 |                                                |       |
|----------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------|
| Signal         | Pin# | Description                                                                                                                                                                       | I/O                                            | Notes |
| 10G_SFP_SDA2   | C33  | I2C data signal of the 2-wire management<br>interface used by the 10GbE controller to access<br>the management registers of an external Optical<br>SFP Module.<br>Carrier board:  | I/O OD<br>CMOS<br>3.3V<br>Suspend<br>/<br>3.3V | 1     |
| 10G_SFP_SCL2   | D33  | I2C clock signal of the 2-wire management<br>interface used by the 10GbE controller to access<br>the management registers of an external Optical<br>SFP Module.<br>Carrier board: | I/O OD<br>CMOS<br>3.3V<br>Suspend<br>/<br>3.3V | 1     |
| 10G_SFP_SDA3   | C32  | I2C data signal of the 2-wire management<br>interface used by the 10GbE controller to access<br>the management registers of an external Optical<br>SFP Module.<br>Carrier board:  | I/O OD<br>CMOS<br>3.3V<br>Suspend<br>/<br>3.3V | 1     |
| 10G_SFP_SCL3   | D32  | I2C clock signal of the 2-wire management<br>interface used by the 10GbE controller to access<br>the management registers of an external Optical<br>SFP Module.<br>Carrier board: | I/O OD<br>CMOS<br>3.3V<br>Suspend<br>/<br>3.3V | 1     |
| 10G_LED_SCL    | C37  | I2C Clock of the 2-wire interface that transfers<br>LED and strap signals for I2C or MDIO operation<br>of optical PHYs.<br>Carrier board:                                         | I/O OD<br>CMOS<br>3.3V<br>Suspend<br>/<br>3.3V |       |
| 10G_PHY_RST_01 | C35  | Output signal that resets an optical PHY on port 0<br>and port1 (with copper PHY this signal is not<br>used).<br>Carrier board:                                                   | O CMOS<br>3.3V<br>Suspend<br>/<br>3.3V         |       |
| 10G_PHY_RST_23 | C34  | Output signal that resets an Optical PHY on port 2<br>and port 3 (with Copper PHY this signal is not<br>used).<br>Carrier board:                                                  | O CMOS<br>3.3V<br>Suspend<br>/<br>3.3V         | 1     |

| Embeddeo    | d - Io | т                                                                                                                                                                                                                                |                                                |       |
|-------------|--------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|-------|
| Signal      | Pin#   | Description                                                                                                                                                                                                                      | I/O                                            | Notes |
| 10G_INT0    | C47    | Interrupt pin from copper PHY or optical SFP<br>Module to the 10GbE controller.<br>Carrier board:                                                                                                                                | I CMOS<br>3.3V<br>Suspend<br>/<br>3.3V         |       |
| 10G_INT1    | D47    | Interrupt pin from copper PHY or optical SFP<br>Module to the 10GbE controller.<br>Carrier board:                                                                                                                                | I CMOS<br>3.3V<br>Suspend<br>/<br>3.3V         |       |
| 10G_INT2    | C24    | Interrupt pin from copper PHY or optical SFP<br>Module to the 10GbE controller.<br>Carrier board:                                                                                                                                | I CMOS<br>3.3V<br>Suspend<br>/<br>3.3V         | 1     |
| 10G_INT3    | D24    | Interrupt pin from copper PHY or optical SFP<br>Module to the 10GbE controller.<br>Carrier board:                                                                                                                                | I CMOS<br>3.3V<br>Suspend<br>/<br>3.3V         | 1     |
| 10G_SDP00   | C40    | Software-Definable Pins. Can also be used for<br>IEEE1588 support such as a 1pps signal. See<br>section 2.6.2 for details.                                                                                                       | I/O<br>CMOS<br>3.3V<br>Suspend<br>/<br>3.3V    |       |
| 10G_SDP1    | D40    | Software-Definable Pins. Can also be used for<br>IEEE1588 support such as a 1pps signal. See<br>section 2.6.2 for details.                                                                                                       | I/O<br>CMOS<br>3.3V<br>Suspend<br>/<br>3.3V    |       |
| 10G_SDP2    | C17    | Software-Definable Pins. Can also be used for<br>IEEE1588 support such as a 1pps signal. See<br>section 2.6.2 for details.                                                                                                       | I/O<br>CMOS<br>3.3V<br>Suspend<br>/<br>3.3V    | 1     |
| 10G_SDP3    | D17    | Software-Definable Pins. Can also be used for<br>IEEE1588 support such as a 1pps signal. See<br>section 2.6.2 for details.                                                                                                       | I/O<br>CMOS<br>3.3V<br>Suspend<br>/<br>3.3V    | 1     |
| 10G_LED_SDA | C36    | I2C Data of the 2-wire interface that transfers LED<br>signals and PHY straps for I2C or MDIO operation<br>of optical PHYs.Refer to the details in table 14<br>'I2C Data Mapping to Carrier Board based<br>PCA9539 I/O expander' | I/O OD<br>CMOS<br>3.3V<br>Suspend<br>/<br>3.3V |       |

Note:

1. SOM-5992 is NC.

| Port Pin | Signal Name    | Signal Function                |
|----------|----------------|--------------------------------|
| P0_0     | 10G_KR_LED0_0# | PHY 0, LED 0 - STATUS/ACT      |
| P0_1     | 10G_KR_LED0_1# | PHY 0, LED 1 - LINK SPEED MAX  |
| P0_2     | 10G_KR_LED0_2# | PHY 0, LED 2 - LINK SPEED      |
| P0_3     | 10G_KR_LED1_0# | PHY 1, LED 0 - STATUS/ACTIVITY |
| P0_4     | 10G_KR_LED1_1# | PHY 1, LED 1 - LINK SPEED MAX  |
| P0_5     | 10G_KR_LED1_2# | PHY 1, LED 2 - LINK SPEED      |
| P0_6     | 0G_KR_STRAP01  | PHY 0-1,                       |
|          |                | 0 = PHY to use I2C,            |
|          |                | 1 = PHY to use MDIO            |
| P0_7     | 10G_KR_STRAP23 | PHY 2-3,                       |
|          |                | 0 = PHY to use I2C,            |
|          |                | 1 = PHY to use MDIO            |
| P1_0     | 10G_KR_LED2_0# | PHY 2, LED 0 - STATUS/ACT      |
| P1_1     | 10G_KR_LED2_1# | PHY 2, LED 1 - LINK SPEED MAX  |
| P1_2     | 10G_KR_LED2_2# | PHY 2, LED 2 - LINK SPEED      |
| P1_3     | 10G_KR_LED3_0# | PHY 3, LED 0 - STATUS/ACT      |
| P1_4     | 10G_KR_LED3_1# | PHY 3, LED 1 - LINK SPEED MAX  |
| P1_5     | 10G_KR_LED3_2# | PHY 3, LED 2 - LINK SPEED      |
| P1_6     | RSVD           | TBD                            |
| P1_7     | RSVD           | TBD                            |


Table 14: I2C Data Mapping to Carrier Board based PCA9539 I/O expander



#### 2.5.2.1 2016 Silicon 10GbE Fiber Implementation

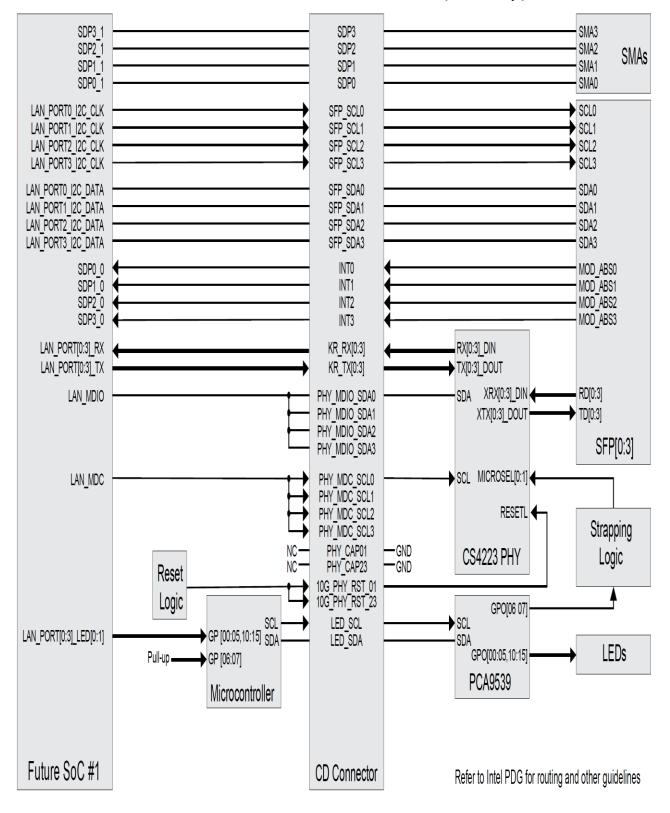
Figure 8: 10G Ethernet Design for Fiber PHY with Broadwell DE

# Broadwell DE with 10G Fiber PHY on COM Express Type 7



#### 2.5.2.2 2016 Silicon 10GbE Copper Implementation

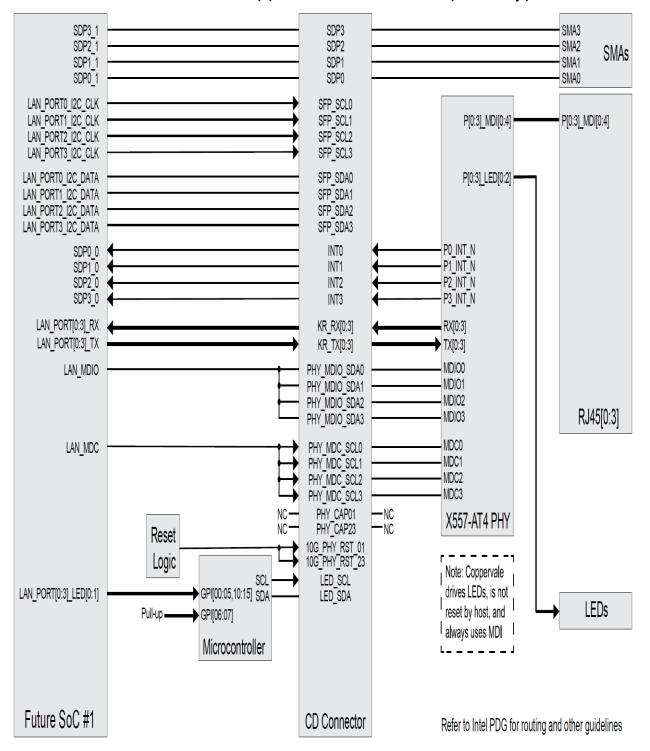
Figure 9: 10G Ethernet Design for Copper PHY with Broadwell DE


# Broadwell DE with 10G Copper PHY on COM Express Type 7



#### 2.5.2.3 Future Silicon 10GbE Fiber Implementation

Figure 10: 10G Ethernet Design for Fiber PHY with Future SoC

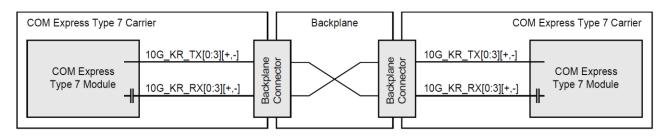

# Future SoC #1 with 10G Fiber PHY on COM Express Type 7



#### 2.5.2.4 Future Silicon 10GbE Copper Implementation

Figure 11: 10G Ethernet Design for Copper PHY with Future SoC

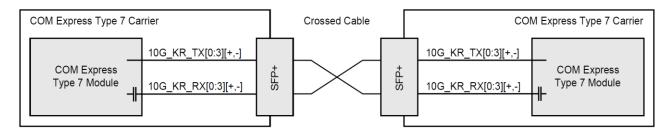
# Future SoC #1 with 10G Copper PHY on COM Express Type 7




#### 2.5.3 AC Coupling of 10G\_KR\_TX Signals

Situation A: Backplaned system (eg VPXR, CPCI, ..)

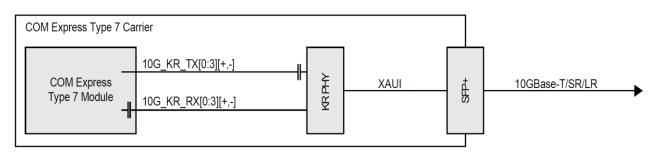
Coupling is at receiver, in this case on both modules at receive pair. No coupling on carrier.


#### Figure 12: 10G Ethernet AC coupling – backplane system



Situation B: Direct attached module-to-module connection.

Coupling is at receiver, in this case on both modules at receive pair. No coupling on carrier.


#### Figure 13: 10G Ethernet AC coupling – direct cable



#### Situation C: PHY on Carrier

Only in this situation the coupling is on the Carrier (at PHY). But this situation is not the only primary function for KR interface (backplane metallic connection).

Figure 14: 10G Ethernet AC coupling - PHY on Carrier



#### 2.5.4 10GB LAN Routing Guidelines

10Gb Ethernet Insertion Loss Performance

The 10Gb Ethernet interface to the COM Express connector is the KR interface as specified in the IEEE 802.3-KR Clause 72 and Annex 69B specification. This is the MAC to PHY interface as opposed to the PHY to connector (magnetic) interface of the 1Gb Ethernet connections.

Typically, the MAC KR interface is connected directly to the PHY. In the case of COM Express, the KR interface is connected through the COM Express connector to the PHY. The insertion loss performance must be maintained within the normative channel specification as stated in IEEE 802.3 Annex 69B. Simulations have shown that the trace length allocations in Table15 meet the required channel specifications. Proper high speed design techniques must be used. Consult the silicon design guide for trace clearance and other design rules. High speed guidance for the routing of 10GHz differential pairs is outside the scope of this document. All differential pairs are routed at 100 Ohms +/-10% differential impedance Match signals within a pair +/- 5 mils

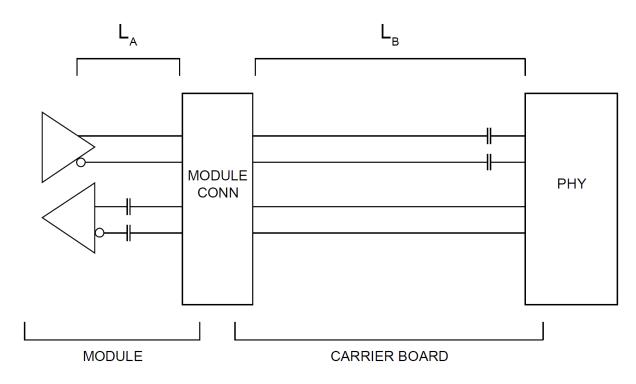



Figure 15: 10GBASE-KR Trace Length Budget

Table 15: 10/100/1000 Ethernet Insertion Loss Budget, 100 MHz

| Segment        | Length (mils) | Notes                                                     |
|----------------|---------------|-----------------------------------------------------------|
| L <sub>A</sub> | 2500          | Up to 2.5 inches of Module trace (within Normal FR4)      |
| L <sub>B</sub> | 5000          | Up to 5 inches of Carrier Board trace (within Normal FR4) |
| Total          | 7500          |                                                           |

## 2.5.4.1 10GB LAN KR Guidelines

| Table 16: 10GB LAN KR Trace Le | ngth Guidelines |
|--------------------------------|-----------------|
|--------------------------------|-----------------|

| Parameter                        | Main Route Guidelines                              | Notes |
|----------------------------------|----------------------------------------------------|-------|
| Signal Group                     | 10GB LAN KR                                        |       |
| Differential Impedance Target    | 100Ω±10%                                           |       |
| Single End                       | 50Ω±10%                                            |       |
| Isolation to equivalent pairs    | 12H (MS) and 5H(DS)                                | 1,2   |
| Isolation to other signal groups | 15H (MS) and 7H (DS)                               | 1     |
| Tx/Rx Spacing                    | 15H(MS) and 7H (DS)                                | 1     |
| LA + LB                          | SOM-5992 Layout Checklist                          |       |
| Lc                               | Carrier Board Length                               |       |
| Max length of LA+LB+LC           | Slot Card: 28"                                     |       |
|                                  | Device Down: 28"                                   |       |
| Length matching                  | Differential pairs (intra-pair): Max. ±5mls        |       |
| Reference Plane                  | GND referencing preferred                          |       |
|                                  | Min 40-mil trace edge-to-major plane edge spacing  |       |
|                                  | GND stitching vias required next to signal vias if |       |
|                                  | transitioning layers between GND layers            |       |
|                                  | Power referencing acceptable if stitching caps are |       |
|                                  | used                                               |       |
| Carrier Board Via Usage          | Max. 2 vias per TX trace, Max. 3 vias per RX trace |       |
| AC coupling                      | The AC coupling capacitors for the TX lines are    | 3     |
|                                  | incorporated on the COM Express Module. The AC     |       |
|                                  | coupling capacitors for RX signal lines have to be |       |
|                                  | implemented on the customer COM Express Carrier    |       |
|                                  | Board. Capacitor type: X7R, 100nF ±10%, 16V, shape |       |
|                                  | 0402.                                              |       |

Notes:

1.H is height above reference plane.

2.Equivalent pairs are TX to TX or RX to RX(Noninterleaved)

3.AC caps are recommended to be placed close to KR device side (avoid placing AC cpas on mid-bus).

## 2.5.4.2 10GB LAN Sideban Guidelines

Table 17: 10GB LAN Sideban Trace Length Guidelines

| Parameter                      | Main Route Guidelines                                     | Notes |
|--------------------------------|-----------------------------------------------------------|-------|
| Signal Group                   | SDP/ MDIO& MDC/LED                                        |       |
| Single End                     | 50Ω ±10%                                                  |       |
| Nominal Trace Space within CRT | Min10mils                                                 |       |
| DAC Signal Group               |                                                           |       |
| Spacing to Other Signal Group  | Min10mils                                                 |       |
| LA                             | Please reference SOM-5992 Layout check list               |       |
| LB                             | Carrier Board Length                                      |       |
| Max length of LA+LB            | 8"                                                        |       |
| Length matching                | 1. Match the trace lengths within MDIO & MDC to $\pm 250$ |       |
|                                | mils.                                                     |       |
| Reference Plane                | GND referencing preferred.                                |       |
|                                | Min 20-mil trace edge-to-major plane edge spacing.        |       |

#### 2.6 Gb Ethernet

One Gigabit Ethernet port is defined, designated GBE0. The ports *may* operate in 10, 100, or 1000 Mbit/sec modes. Magnetics are assumed to be on the Carrier Board. All COM Express Modules *shall* implement at least one Ethernet port on the GBE0 pin slot and this *should* be capable of at least 10/100 mode.

#### 2.6.1 Gb Ethernet Signal Definitions

The LAN interface of the COM Express Module consists of 4 pairs of low voltage differential pair signals designated from '*GBE0\_MDI0*'(+ and -) to '*GBE0\_MDI3*'(+ and -) plus additional control signals for link activity indicators. These signals can be used to connect to a 10/100/1000BASE-T RJ45 connector with integrated or external isolation magnetics on the Carrier Board. The corresponding LAN differential pair and control signals can be found on rows A and B of the Module's connector.

#### Table 18: Gb Ethernet Interface Signal Descriptions

| Signal     | Pin# | Description                                       | I/O     | Note |
|------------|------|---------------------------------------------------|---------|------|
| GBE0_MDI0+ | A13  | Media Dependent Interface (MDI) differential pair | I/O GBE |      |
| GBE0_MDI0- | A12  | 0. The MDI can operate in 1000, 100, and          |         |      |
|            |      | 10Mbit/sec modes.                                 |         |      |
|            |      | Module has integrated termination.                |         |      |
|            |      | Carrier Board:                                    |         |      |
|            |      | Connect to Magnetics Module MDI0+/-               |         |      |
|            |      | N/C if not used.                                  |         |      |
| GBE0_MDI1+ | A10  | Media Dependent Interface (MDI) differential pair | I/O GBE |      |
| GBE0_MDI1- | A9   | 1. The MDI can operate in 1000, 100, and          |         |      |
|            |      | 10Mbit/sec modes.                                 |         |      |
|            |      | Module has integrated termination.                |         |      |
|            |      | Carrier Board:                                    |         |      |
|            |      | Connect to Magnetics Module MDI0+/-               |         |      |
|            |      | N/C if not used                                   |         |      |
| GBE0_MDI2+ | A7   | Media Dependent Interface (MDI) differential pair | I/O GBE |      |
| GBE0_MDI02 | A6   | 2. The MDI can operate in 1000, 100, and          |         |      |
|            |      | 10Mbit/sec modes.                                 |         |      |
|            |      | Module has integrated termination.                |         |      |
|            |      | Carrier Board:                                    |         |      |
|            |      | Connect to Magnetics Module MDI2+/-               |         |      |
|            |      | N/C if not used.                                  |         |      |

| Embedd         | ed   | - IoT                                                                                                             |                                                   |                  |                    |                     |      |
|----------------|------|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------|------------------|--------------------|---------------------|------|
| Signal         | Pin# | Description                                                                                                       |                                                   |                  |                    | I/O                 | Note |
| GBE0_MDI3+     | A3   | Media Depend                                                                                                      | Media Dependent Interface (MDI) differential pair |                  | I/O GBE            |                     |      |
| GBE0_MDI3-     | A2   | 3. The MDI ca                                                                                                     | in operate in 1                                   | 000, 100, and    | 10Mbit/sec         |                     |      |
|                |      | modes.                                                                                                            |                                                   |                  |                    |                     |      |
|                |      | Module has in                                                                                                     | tegrated termi                                    | ination.         |                    |                     |      |
|                |      | Carrier Board                                                                                                     | :                                                 |                  |                    |                     |      |
|                |      | Connect to Ma                                                                                                     | agnetics Modu                                     | ıle MDI3+/-      |                    |                     |      |
|                |      | N/C if not use                                                                                                    | d                                                 |                  |                    |                     |      |
| GBE0_CTREF     | A14  | Reference vol                                                                                                     | tage for Carrie                                   | er Board Ether   | met channel 0      | REF                 | 1    |
|                |      | magnetics cer                                                                                                     | nter tap.                                         |                  |                    | GND min<br>3.3V max |      |
|                |      | Carrier Board                                                                                                     | :                                                 |                  |                    | 0.07 110            |      |
|                |      | 0.1uF to grou                                                                                                     | nd.                                               |                  |                    |                     |      |
|                |      | N/C if not use                                                                                                    | d.                                                |                  |                    |                     |      |
| GBE0_LINK#     | A8   | Ethernet contr                                                                                                    | oller 0 link ind                                  | licator, active  | low.               | O 3.3V              |      |
|                |      | Carrier Board                                                                                                     | :                                                 |                  |                    | Suspend /<br>3.3V   |      |
|                |      | N/C if not use                                                                                                    | d.                                                |                  |                    | OD CMOS             |      |
| GBE0_LINK100#  | A4   | Ethernet contr                                                                                                    | oller 0 100Mb                                     | it/sec link indi | cator, active low. | O 3.3V              |      |
|                |      | Carrier Board                                                                                                     | :                                                 |                  |                    | Suspend /           |      |
|                |      | N/C if not use                                                                                                    | d.                                                |                  |                    | 3.3V<br>OD CMOS     |      |
| GBE0_LINK1000# | A5   | Ethernet contr                                                                                                    | oller 0 1000M                                     | bit/sec link inc | licator, active    | O 3.3V              |      |
|                |      | low.                                                                                                              |                                                   |                  |                    | Suspend /           |      |
|                |      | Carrier Board                                                                                                     | :                                                 |                  |                    | 3.3V<br>OD CMO      |      |
|                |      | N/C if not use                                                                                                    | d.                                                |                  |                    |                     |      |
| GBE0_ACT#      | B2   | Ethernet controller 0 activity indicator, active low.                                                             |                                                   | O 3.3V           |                    |                     |      |
|                |      | Carrier Board                                                                                                     |                                                   |                  |                    | Suspend /           |      |
|                |      | N/C if not use                                                                                                    | d.                                                |                  |                    | 3.3V<br>OD CMO      |      |
| GBE0_SDP       | A49  | Gigabit Etherr                                                                                                    | net Controller (                                  | 0 Software-De    | finable Pins.      | 1/0                 |      |
|                |      | -                                                                                                                 |                                                   |                  | uch as a 1pps      | 3.3V                |      |
|                |      | signal. See se                                                                                                    |                                                   |                  |                    | Suspend /           |      |
| GBE0_MDI[0:3]+ |      | •                                                                                                                 |                                                   |                  | endent Interface   | 3.3V<br>I/O         |      |
| GBE0_MDI[0:3]- |      | -                                                                                                                 |                                                   | •                |                    | Analog              |      |
|                |      | Differential Pairs 0,1,2,3. The MDI can operate in 1000,<br>100 and 10 Mbit / sec modes. Some pairs are unused in |                                                   |                  |                    |                     |      |
|                |      | some modes, per the following:                                                                                    |                                                   |                  |                    |                     |      |
|                |      | ,                                                                                                                 | 1000BASE-T                                        | 100BASE-TX       | 10BASE-T           |                     |      |
|                |      | MDI[0]+/-                                                                                                         | B1_DA+/-                                          | TX+/-            | TX+/-              |                     |      |
|                |      | MDI[1]+/-                                                                                                         | B1_DB+/-                                          | RX+/-            | RX+/-              |                     |      |
|                |      | MDI[2]+/-                                                                                                         | B1_DC+/-                                          |                  |                    |                     |      |
|                |      | MDI[3]+/-                                                                                                         | B1_DD+/-                                          |                  |                    |                     |      |

Note

#### 2.6.2 SDP Pins

The Software Defined Pins (SDP) can be used to provide a timing communication path between the Module and Carrier. A board level signal that communicates time is a key element that facilitates clock synchronization between elements of a platform. Examples of such elements include, but are not limited to, CPU, Chipset, FPGA and others.

Modules *should* connect the SDP signal to a module element pin capable of propagating (transmitting) time, and/or time-stamping (receiving) the signal to extract time information from it. If implemented, the direction of the signal with respect to the module element *should* be able to be determined by system software.

#### Pulse Per Second (PPS):

A PPS signal conveys both frequency and phase and can be used to transfer time information between elements within a platform. It is commonly used because it encapsulates both frequency and time into a single signal. It is preferred over other methods that require more complex implementations of hardware and software. A GPS is probably the most widespread, high-quality, clock source capable of generating a PPS signal.

#### Platform-level Synchronization Implementation Examples:

*Example1:* The Network Interface Controller (NIC) on the COM Module is Precision Time Protocol (PTP) capable and the COM designer has connected a software configurable, timing aware, pin on the NIC to the SDP pin on the module/carrier interface. Software can configure the NIC to output a PPS signal onto this pin that connects it to one or more elements on the module and/or carrier board.

*Example2:* The carrier board has provisions for connecting a PPS output from a GPS to the SDP signal connection to the module. The module element (i.e. NIC, CPU, Chipset) can receive the timing information from the carrier board and adjust its time accordingly.

#### Precision Time Protocol - Background

Standards such as IEEE 1588, 802.1AS, and Time Sensitive Networking (TSN) provide standards for synchronizing time between nodes on a local area network. Additional benefits of the standards may include lower latency and improved network traffic Quality of Service (QoS). Systems that commonly require synchronization include those made up of distributed nodes that perform measurement, control, and compute functions. These nodes may have clock sources with varying degrees of accuracy and stability.

System-wide time synchronization with sub-microsecond accuracy is supported, by PTP standards, with minimal network and compute resource utilization.

It is the merger of the platform-level synchronization and network level synchronization pieces that enable real-time distributed systems. Additional information regarding the aforementioned standards can be found in their respective specifications and widely available supporting documents.

#### Software Implementation:

The software architecture and features required to support platform and network level synchronization are outside the scope of this specification.

## 2.6.3 Gb Ethernet Routing Guidelines

10/100/1000 Ethernet Insertion Loss Budget

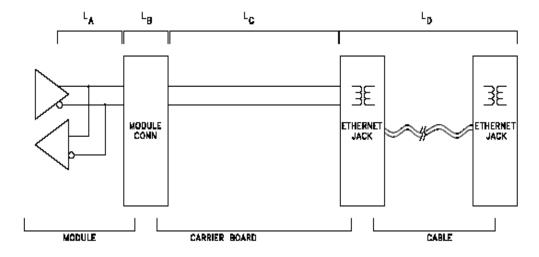
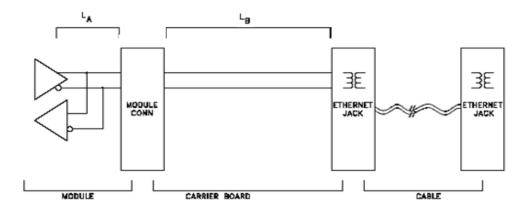



Figure 16: 10/100/1000 Ethernet Insertion Loss Budget

COM Express Ethernet implementations should conform to insertion loss values less than or equal to those shown in the table above. The insertion loss values shown account for frequency dependent material losses only. Cross talk losses are separate from material losses in the Gb Ethernet specification.


"Device Down" implementations, in which the Ethernet target device is implemented on the Carrier Board (for instance, an Ethernet switch), may add the insertion loss for the RJ45 Ethernet jack and integrated magnetics to the Carrier Board budget. This insertion loss value is typically 1 dB. The Carrier Board insertion loss budget then becomes LC + 1 dB, or 1.15 dB.

| Segment        | Loss (dB) | Notes                                                              |
|----------------|-----------|--------------------------------------------------------------------|
| L <sub>A</sub> | 0.08      | Up to 3 inches of module trace @ 0.28 dB / GHz / inch              |
| L <sub>B</sub> | 0.02      | COM Express <sup>™</sup> connector at 100 MHz measured value       |
| L <sub>C</sub> | 0.15      | Up to 5 inches of Carrier Board trace @ 0.28 dB / GHz / inch       |
| L <sub>D</sub> | 24.00     | Cable and cable connectors, integrated magnetics, per source spec. |
| Total          | 24.25     |                                                                    |

Table 19: 10/100/1000 Ethernet Insertion Loss Budget, 100 MHz

## 2.6.4 Gb Ethernet Trace Length Guidelines

Figure 17: Topology for Ethernet Jack



#### Table 20: Ethernet Trace Length Guidelines

| Parameter                          | Main Route Guidelines                                 | Notes |
|------------------------------------|-------------------------------------------------------|-------|
| Signal Group                       | GBE0_MDIx+, GBE0_MDIx-                                |       |
| Differential Impedance Target      | 100 Ω ±10%                                            |       |
| Single End                         | 55Ω ±10%                                              |       |
| Spacing between RX and TX          | Min. 50mils                                           |       |
| pairs (inter-pair) (s)             |                                                       |       |
| Spacing between differential pairs | Min. 300mils                                          |       |
| and high-speed periodic signals    |                                                       |       |
| Spacing between differential pairs | Min. 100mils                                          |       |
| and low-speed non periodic         |                                                       |       |
| signals                            |                                                       |       |
| Spacing between digital ground     | Min. 60mils                                           |       |
| and analog ground plane            |                                                       |       |
| (between the magnetics Module      |                                                       |       |
| and RJ45 connector)                |                                                       |       |
| LA                                 | Please see the SOM-5992 Layout Checklist              |       |
| LB                                 | Carrier Board Length;                                 |       |
| Max length of LA+LB                | COM Express Module to the magnetics Module - 5.0      |       |
|                                    | inches.                                               |       |
|                                    | Magnetics Module to RJ45 connector - Max. 1.0 inches. |       |
| Length matching                    | Differential pairs (intra-pair): Max. ±2.5 mils       |       |
| Reference Plane                    | GND referencing preferred                             |       |
| Spacing from edge of plane         | Min. 40mils                                           |       |
| Carrier Board Via Usage            | Max. 2 vias.                                          |       |

Notes:

#### 2.6.5 Reference Ground Isolation and Coupling

The Carrier Board should maintain a well-designed analog ground plane around the components on the primary side of the transformer between the transformer and the RJ-45 receptacle. The analog ground plane is bonded to the shield of the external cable through the RJ-45 connector housing.

The analog ground plane should be coupled to the carrier's digital logic ground plane using a capacitive coupling circuit that meets the ground plane isolation requirements defined in the 802.3-2005 specification. It is recommended that the Carrier Board PCB design maintain a minimum 30 mil gap between the digital logic ground plane and the analog ground plane.

It's recommended to place an optional GND to SHIELDGND connection near the RJ-45 connector to improve EMI and ESD capabilities.

## 2.7 USB2.0 Ports

All USB interfaces *shall* be USB 2.0 compliant. The minimum of 4 USB channels provides support for keyboard, mouse, CD/DVD drive, and one additional device. Up to four USB 2.0 ports *may* support the extended signaling for SuperSpeed USB 3.0. USB0 *may* optionally be configured as a USB client.

#### 2.7.1 USB2.0 Signal Definitions

| Table 21: USB Sig | nal Descriptions |
|-------------------|------------------|
|-------------------|------------------|

| Signal | Pin# | Description I/O                                                        |         | Note |
|--------|------|------------------------------------------------------------------------|---------|------|
| USB0+  | A46  | USB0 <i>may</i> be configured as a USB client or as a host, or I/O USB |         |      |
| USB0-  | A45  | both at the Module designer's discretion.                              |         |      |
|        |      | All other USB ports, if implemented, <i>shall</i> be host ports.       |         |      |
|        |      | USB Port 0, data + or D+                                               |         |      |
|        |      | USB Port 0, data + or D-                                               |         |      |
|        |      | Carrier board:                                                         |         |      |
|        |      | Device - Connect to D+/-                                               |         |      |
|        |      | Conn Connect $90\Omega$ @100MHz Common Choke in series                 |         |      |
|        |      | and ESD suppressors to GND to Pin 3 D+ / Pin 2 D-                      |         |      |
|        |      | N/C if not used                                                        |         |      |
| USB1+  | B46  | USB Port 1, data + or D+                                               | I/O USB |      |
| USB1-  | B45  | USB Port 1, data + or D-                                               |         |      |
|        |      | Carrier board:                                                         |         |      |
|        |      | Device - Connect to D+/-                                               |         |      |
|        |      | Conn Connect 90 $\Omega$ @100MHz Common Choke in series                |         |      |
|        |      | and ESD suppressors to GND to Pin 3 D+ / Pin 2 D-                      |         |      |
|        |      | N/C if not used                                                        |         |      |
| USB2+  | A43  | USB Port 2, data + or D+                                               | I/O USB |      |
| USB2-  | A42  | USB Port 2, data + or D-                                               |         |      |
|        |      | Carrier board:                                                         |         |      |
|        |      | Device - Connect to D+/-                                               |         |      |
|        |      | Conn Connect 90 $\Omega$ @100MHz Common Choke in series                |         |      |
|        |      | and ESD suppressors to GND to Pin 3 D+ / Pin 2 D-                      |         |      |
|        |      | N/C if not used                                                        |         |      |

| Signal      | Pin# | Description                                                        | I/O          | Note |
|-------------|------|--------------------------------------------------------------------|--------------|------|
| USB3+       | B43  | USB Port 3, data + or D+                                           | I/O USB      |      |
| USB3-       | B42  | USB Port 3, data + or D-                                           |              |      |
|             |      | Carrier board:                                                     |              |      |
|             |      | Device - Connect to D+/-                                           |              |      |
|             |      | Conn Connect 90 $\Omega$ @100MHz Common Choke in                   |              |      |
|             |      | series and ESD suppressors to GND to Pin 3 D+ / Pin 2 D-           |              |      |
|             |      | N/C if not used                                                    |              |      |
| USB_0_1_OC# | B44  | USB over-current sense, USB channels 0 and 1. A pull-up            | I 3.3V       |      |
|             |      | for this line <i>shall</i> be present on the Module. An open drain | SUSPEND      |      |
|             |      | driver from a USB current monitor on the Carrier Board             | /            |      |
|             |      | <i>may</i> drive this line low. Do not pull this line high on the  | 3.3V<br>CMOS |      |
|             |      | Carrier Board.                                                     | CIVICS       |      |
|             |      | Connect to Overcurrent of Power Distribution Switch and            |              |      |
|             |      | Bypass 0.1uF to GND                                                |              |      |
|             |      | N/C if not used                                                    |              |      |
| USB_2_3_OC# | A44  | USB over-current sense, USB channels 0 and 1. A pull-up            | I 3.3V       |      |
|             |      | for this line <i>shall</i> be present on the Module. An open drain | SUSPEND      |      |
|             |      | driver from a USB current monitor on the Carrier Board             | /            |      |
|             |      | may drive this line low. Do not pull this line high on the         | 3.3V<br>CMOS |      |
|             |      | Carrier Board.                                                     | 011100       |      |
|             |      | Connect to Overcurrent of Power Distribution Switch and            |              |      |
|             |      | Bypass 0.1uF to GND                                                |              |      |
|             |      | N/C if not used                                                    |              |      |
| USB0_HOST_  | B48  | Module USB client <i>may</i> detect the presence of a USB host     | I 3.3V       | 1    |
| PRSNT       |      | on USB0. A high value indicates that a host is present.            | SUSPEND      |      |
|             |      | Carrier Board:                                                     | /            |      |
|             |      | N/C if not used                                                    | 3.3V<br>CMOS |      |
|             |      |                                                                    | GIVIOS       |      |

Notes:

1. SOM-5992 is NC pin.

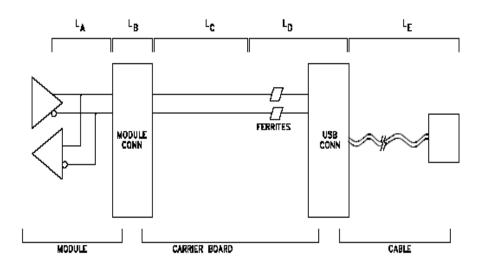


The USB Specification describes power distribution over the USB port, which supplies power for USB devices that are directly connected to the Carrier Board. Therefore, the host must implement over-current protection on the ports for safety reasons. Should the aggregate current drawn by the downstream ports exceed a permitted value, the over-current protection circuit removes power from all affected downstream ports. The over-current limiting mechanism must be resettable without user mechanical intervention. For more detailed information about this subject, refer to the 'Universal Serial Bus Specifications Revision 2.0', which can be found on the website http://www.usb.org.

Over-current protection for USB ports can be implemented by using power distribution switches on the Carrier Board that monitor the USB port power lines. Power distribution switches usually have a soft-start circuitry that minimizes inrush current in applications where highly capacitive loads are employed. Transient faults are internally filtered.

Additionally, they offer a fault status output that is asserted during over-current and thermal shutdown conditions. These outputs should be connected to the corresponding COM Express Modules USB over-current sense signals. Fault status signaling is an option at the USB specification. If you don't need the popup message in your OS you may leave the signals USB\_0\_1\_OC#, USB\_2\_3\_OC#, unconnected.

Simple resettable PolySwitch devices are capable of fulfilling the requirements of USB overcurrent protection and therefore can be used as a replacement for power distribution switches. Fault status signals are connected by a pullup resistor to VCC\_3V3\_SBY on COM Express Module. Please check your tolerance on a USB port with VCC\_5V supply.


#### 2.7.1.2 Powering USB devices during S5

The power distribution switches and the ESD protection shown in the schematics can be powered from Main Power or Suspend Power (VCC\_5V\_SBY). Ports powered by Suspend Power are powered during the S3 and S5 system states. This provides the ability for the COM Express Module to generate system wake-up events over the USB interface.

#### 2.7.2 USB2.0 Routing Guidelines

#### USB 2.0 Insertion Loss Budget

#### Figure 18: USB 2.0 Insertion Loss Budget



COM Express USB implementations should conform to insertion loss values less than or equal to those shown in the table above. The insertion loss values shown account for frequency dependent material losses only. Cross talk losses are separate from material losses in the USB specification.

"Device Down" implementations, in which the USB target device is implemented on the Carrier Board, may add the ferrite and USB connector insertion loss values to the Carrier Board budget.

The Carrier Board insertion loss budget then becomes LC + LD, or 2.68 dB.

Table 22 :USB Insertion Loss Budget, 400 MHz

| Segment        | Loss (dB) | Notes                                                          |
|----------------|-----------|----------------------------------------------------------------|
| L <sub>A</sub> | 0.67      | Up to 6 inches of module trace @ 0.28 dB / GHz / inch          |
| L <sub>B</sub> | 0.05      | COM Express connector at 400 MHz measured value                |
| L <sub>C</sub> | 1.68      | Up to 14 inches of Carrier Board trace @ 0.28 dB / GHz / inch  |
| L <sub>D</sub> | 1.00      | USB connector and ferrite loss                                 |
| L <sub>E</sub> | 5.80      | USB cable and far end connector loss, per source specification |
| Total          | 9.20      |                                                                |



### 2.7.2.1 USB 2.0 General Design Considerations and Optimization

Use the following general routing and placement guidelines when laying out a new design. These guidelines help minimize signal quality and EMI problems.

- Do not route USB 2.0 traces under crystals, oscillators, clock synthesizers, magnetic devices or ICs that use and/or duplicate clocks.
- Separate signal traces into similar categories, and route similar signal traces together (such as routing differential-pairs together).
- Keep USB 2.0 signals clear of the core logic set. High current transients are produced during internal state transitions and can be very difficult to filter out.
- Follow the 20 x h rule by keeping traces at least [20 x (height above the plane)] mils away from the edge of the plane (VCC or GND). For an example stackup, the height above the plane is 4.5 mils (0.114 mm). This calculates to a 90-mil (2.286-mm) spacing requirement from the edge of the plane. This helps prevent the coupling of the signal onto adjacent wires and also helps prevent free radiation of the signal from the edge of the PCB.
- Avoid stubs on high-speed USB signals because stubs cause signal reflections and affect signal quality. If a stub is unavoidable in the design, the total of all the stubs on a particular line should not be greater than 200 mils (5.08 mm).

### 2.7.2.2 USB 2.0 Port Power Delivery

The following is a suggested topology for power distribution of VBUS to USB ports.

These circuits provide two types of protection during dynamic attach and detach situations on the bus: inrush current limiting (droop) and dynamic detach flyback protection. These two types require both bulk capacitance (droop) and filtering capacitance (for dynamic detach flyback voltage filtering). **Intel** recommends the following:

- Minimize the inductance and resistance between the coupling capacitors and the USB ports.
- Place capacitors as close as possible to the port and the power-carrying traces should be as wide as possible, preferably, a plane.
- Make the power-carrying traces wide enough that the system fuse blows on an over current event. If the system fuse is rated at 1 A, then the power-carrying traces should be wide enough to carry at least 1.5 A.

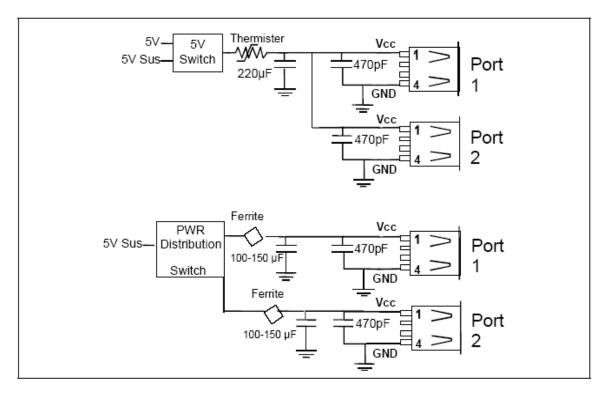
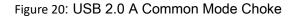
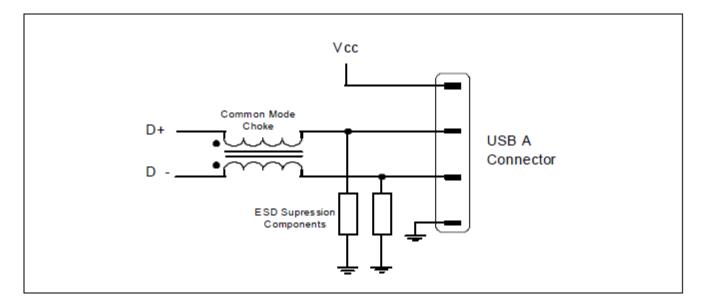





Figure 19: USB 2.0 Good Downstream Power Connection

### 2.7.2.3 USB 2.0 Common Mode Chokes

Testing has shown that common mode chokes can provide required noise attenuation. A design should include a common mode choke footprint to provide a stuffing option in the event the choke is needed to pass EMI testing. Below figure shows the schematic of a typical common mode choke and ESD suppression components. Place the choke as close as possible to the USB connector signal pins.



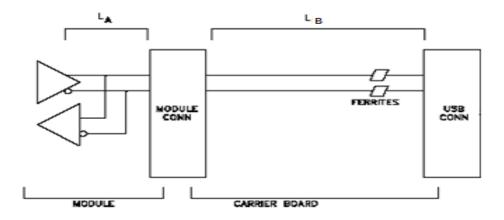


Common mode chokes distort full-speed and high-speed signal quality. As the common mode impedance increases the distortion increases, therefore test the effects of the common mode choke on full speed and high-speed signal quality. Common mode chokes with a target impedance of 80  $\Omega$  to 90  $\Omega$ , at 100 MHz, generally provide adequate noise attenuation.

Finding a common mode choke that meets the designer's needs is a two-step process:

- 1. Choose a part with the impedance value that provides the required noise attenuation. This is a function of the electrical and mechanical characteristics of the part chosen and the frequency and strength of the noise present on the USB traces that should be suppressed.
- 2. After obtaining a part that gives passing EMI results, the second step is to test the effect this part has on signal quality. Higher impedance common mode chokes generally have a greater damaging effect on signal quality, so care must be used when increasing the impedance without doing thorough testing. Thorough testing means that the signal quality must be checked for low-speed, full-speed, and highspeed USB operation.

Further common mode choke information can be found on the high-speed USB Platform Design Guides available at www.usb.org.


### 2.7.2.4 EMI / ESD Protection

To improve the EMI behavior of the USB interface, a design should include common mode chokes, which have to be placed as close as possible to the USB connector signal pins. Common mode chokes can provide required noise attenuation but they also distort the signal quality of full-speed and high-speed signaling. Therefore, common mode chokes should be chosen carefully to meet the requirements of the EMI noise filtering while retaining the integrity of the USB signals on the Carrier Board design.

To protect the USB host interface of the Module from over-voltage caused by electrostatic discharge (ESD) and electrical fast transients (EFT), low capacitance steering diodes and transient voltage suppression diodes have to be implemented on the Carrier Board design. In the USB reference schematics Figure 29 above, this is implemented by using 'SR05 RailClampR' surge rated diode arrays from Semtech (http://semtech.com).

### 2.7.3 USB2.0 Trace Length Guidelines

Figure 21: Topology for USB2.0



### Table 23: USB2.0 Trace Length Guidelines

| Parameter                      | Main Route Guidelines                         | Notes |
|--------------------------------|-----------------------------------------------|-------|
| Signal Group                   | USB[3:0]+, USB[3:0]-                          |       |
| Differential Impedance Target  | 85 Ω ±10%                                     |       |
| Single End                     | 55Ω ±10%                                      |       |
| Spacing between pairs-to-pairs | 7H (MS) and 5H (DS)                           | 1     |
| (inter-pair) (s)               |                                               |       |
| Spacing between differential   | Min. 50 mils                                  |       |
| pairs and high-speed periodic  |                                               |       |
| signals                        |                                               |       |
| Spacing between differential   | 7H (MS) and 5H (DS)                           | 1     |
| pairs and low-speed non        |                                               |       |
| periodic signals               |                                               |       |
| LA                             | Please see the SOM-5992 Layout Checklist      |       |
| LB                             | Carrier Board Length                          |       |
| Max length of LA+LB            | 16"                                           |       |
| Length matching                | Differential pairs (intra-pair): Max. ±2 mils |       |
| Reference Plane                | GND referencing preferred                     |       |
| Spacing from edge of plane     | Min. 40mils                                   |       |
| Carrier Board Via Usage        | Try to minimize number of vias                |       |

Notes:

1. H is height above reference plane.

## 2.8 USB3.0

USB 3.0 is the third major revision of the Universal Serial Bus (USB) standard for computer connectivity. It adds a new transfer speed called SuperSpeed (SS) to the already existing LowSpeed (LS), FullSpeed (FS) and HighSpeed (HS).

USB 3.0 leverages the existing USB 2.0 infrastructure by adding two additional data pair lines to allow a transmission speed up to 5 Gbit/s, which is 10 times faster than USB 2.0 with 480 Mbit/s. The additional data lines are unidirectional instead of the bidirectional USB 2.0 data lines. USB 3.0 is fully backward compatible to USB 2.0. USB 3.0 connectors are different from USB 2.0 connectors. The USB 3.0 connector is a super set of a USB 2.0 connector, with 4 additional pins that are invisible to USB 2.0 connectors. A USB 2.0 Type A plug may be used in a USB 3.0 Type A receptacle, but the USB 3.0 SuperSpeed functions will not be available.

## 2.8.1 USB3.0 Signal Definitions

Table 24: USB3.0 Signal Definitions

| Signal     | Pin# | Description                                            | I/O    | Note |
|------------|------|--------------------------------------------------------|--------|------|
| USB_SSTX0+ | D4   | USB Port 0, SuperSpeed TX +                            | O PCIE |      |
| USB_SSTX0- | D3   | USB Port 0, SuperSpeed TX –                            |        |      |
|            |      | Module has integrated AC Coupling Capacitors           |        |      |
|            |      | Carrier Board:                                         |        |      |
|            |      | Device - Connect to StdA_SSRX+/-                       |        |      |
|            |      | Conn Connect $0\Omega$ and $90\Omega$ @100MHz USB3.0   |        |      |
|            |      | Common Mode Choke(NL) combined in series and           |        |      |
|            |      | USB3.0 ESD suppressors to GND to Pin 9                 |        |      |
|            |      | StdA_SSTX+ / Pin 8 StdA_SSTX-, the value of CMC        |        |      |
|            |      | depends on EMI and signal integrity performance.       |        |      |
|            |      | N/C if not used                                        |        |      |
| USB_SSTX1+ | D7   | USB Port 1, SuperSpeed TX +                            | O PCIE |      |
| USB_SSTX1- | D6   | USB Port 1, SuperSpeed TX –                            |        |      |
|            |      | Module has integrated AC Coupling Capacitors           |        |      |
|            |      | Carrier Board:                                         |        |      |
|            |      | Device - Connect to StdA_SSRX+/-                       |        |      |
|            |      | Conn Connect 0 $\Omega$ and 90 $\Omega$ @100MHz USB3.0 |        |      |
|            |      | Common Mode Choke(NL) combined in series and           |        |      |
|            |      | USB3.0 ESD suppressors to GND to Pin 9                 |        |      |
|            |      | StdA_SSTX+ / Pin 8 StdA_SSTX-, the value of CMC        |        |      |
|            |      | depends on EMI and signal integrity performance.       |        |      |
|            |      | N/C if not used                                        |        |      |

| Signal     | Pin# | Description                                          | I/O    | Note |
|------------|------|------------------------------------------------------|--------|------|
| USB_SSTX2+ | D10  | USB Port 2, SuperSpeed TX +                          | O PCIE |      |
| USB_SSTX2- | D9   | USB Port 2, SuperSpeed TX –                          |        |      |
|            |      | Module has integrated AC Coupling Capacitors         |        |      |
|            |      | Carrier Board:                                       |        |      |
|            |      | Device - Connect to StdA_SSRX+/-                     |        |      |
|            |      | Conn Connect $0\Omega$ and $90\Omega$ @100MHz USB3.0 |        |      |
|            |      | Common Mode Choke(NL) combined in series and         |        |      |
|            |      | USB3.0 ESD suppressors to GND to Pin 9               |        |      |
|            |      | StdA_SSTX+ / Pin 8 StdA_SSTX-, the value of CMC      |        |      |
|            |      | depends on EMI and signal integrity performance.     |        |      |
|            |      | N/C if not used                                      |        |      |
| USB_SSTX3+ | D13  | USB Port 3, SuperSpeed TX +                          | O PCIE |      |
| USB_SSTX3- | D12  | USB Port 3, SuperSpeed TX –                          |        |      |
|            |      | Module has integrated AC Coupling Capacitors         |        |      |
|            |      | Carrier Board:                                       |        |      |
|            |      | Device - Connect to StdA_SSRX+/-                     |        |      |
|            |      | Conn Connect $0\Omega$ and $90\Omega$ @100MHz USB3.0 |        |      |
|            |      | Common Mode Choke(NL) combined in series and         |        |      |
|            |      | USB3.0 ESD suppressors to GND to Pin 9               |        |      |
|            |      | StdA_SSTX+ / Pin 8 StdA_SSTX-, the value of CMC      |        |      |
|            |      | depends on EMI and signal integrity performance.     |        |      |
|            |      | N/C if not used                                      |        |      |
| USB_SSRX0+ | C4   | USB Port 0, SuperSpeed RX +                          | I PCIE |      |
| USB_SSRX0- | C3   | USB Port 0, SuperSpeed RX –                          |        |      |
|            |      | Carrier Board:                                       |        |      |
|            |      | Device - Connect AC Coupling Capacitors 100nF        |        |      |
|            |      | near COME to StdA_SSTX+/-                            |        |      |
|            |      | Conn Connect $0\Omega$ and $90\Omega$ @100MHz USB3.0 |        |      |
|            |      | Common Mode Choke(NL) combined in series and         |        |      |
|            |      | USB3.0 ESD suppressors to GND to Pin 6               |        |      |
|            |      | StdA_SSRX+ / Pin 5 StdA_SSRX-, the value of CMC      |        |      |
|            |      | depends on EMI and signal integrity performance.     |        |      |
|            |      | N/C if not used                                      |        |      |

F

| Embedo     | ded · | - IoT                                                |        |      |
|------------|-------|------------------------------------------------------|--------|------|
| Signal     | Pin#  | Description                                          | I/O    | Note |
| USB_SSRX1+ | C7    | USB Port 1, SuperSpeed RX +                          | I PCIE |      |
| USB_SSRX1- | C6    | USB Port 1, SuperSpeed RX –                          |        |      |
|            |       | Carrier Board:                                       |        |      |
|            |       | Device - Connect AC Coupling Capacitors 100nF        |        |      |
|            |       | near COME to StdA_SSTX+/-                            |        |      |
|            |       | Conn Connect $0\Omega$ and $90\Omega$ @100MHz USB3.0 |        |      |
|            |       | Common Mode Choke(NL) combined in series and         |        |      |
|            |       | USB3.0 ESD suppressors to GND to Pin 6               |        |      |
|            |       | StdA_SSRX+ / Pin 5 StdA_SSRX-, the value of CMC      |        |      |
|            |       | depends on EMI and signal integrity performance.     |        |      |
|            |       | N/C if not used                                      |        |      |
| USB_SSRX2+ | C10   | USB Port 2, SuperSpeed RX +                          | I PCIE |      |
| USB_SSRX2- | C9    | USB Port 2, SuperSpeed RX –                          |        |      |
|            |       | Carrier Board:                                       |        |      |
|            |       | Device - Connect AC Coupling Capacitors 100nF        |        |      |
|            |       | near COME to StdA_SSTX+/-                            |        |      |
|            |       | Conn Connect $0\Omega$ and $90\Omega$ @100MHz USB3.0 |        |      |
|            |       | Common Mode Choke(NL) combined in series and         |        |      |
|            |       | USB3.0 ESD suppressors to GND to Pin 6               |        |      |
|            |       | StdA_SSRX+ / Pin 5 StdA_SSRX-, the value of CMC      |        |      |
|            |       | depends on EMI and signal integrity performance.     |        |      |
|            |       | N/C if not used                                      |        |      |
| USB_SSRX3+ | C13   | USB Port 3, SuperSpeed RX +                          | I PCIE |      |
| USB_SSRX3- | C12   | USB Port 3, SuperSpeed RX –                          |        |      |
|            |       | Carrier Board:                                       |        |      |
|            |       | Device - Connect AC Coupling Capacitors 100nF        |        |      |
|            |       | near COME to StdA_SSTX+/-                            |        |      |
|            |       | Conn Connect $0\Omega$ and $90\Omega$ @100MHz USB3.0 |        |      |
|            |       | Common Mode Choke(NL) combined in series and         |        |      |
|            |       | USB3.0 ESD suppressors to GND to Pin 6               |        |      |
|            |       | StdA_SSRX+ / Pin 5 StdA_SSRX-, the value of CMC      |        |      |
|            |       | depends on EMI and signal integrity performance.     |        |      |
|            |       | N/C if not used                                      |        |      |

Notes:

### 2.8.1.1 USB Over-Current Protection (USB\_x\_y\_OC#)

The USB Specification describes power distribution over the USB port, which supplies power for USB devices that are directly connected to the Carrier Board. Therefore, the host must implement over-current protection on the ports for safety reasons. Should the aggregate current drawn by the downstream ports exceed a permitted value, the over-current protection circuit removes power from all affected downstream ports. The over-current limiting mechanism must be resettable without user mechanical intervention. For more detailed information about this subject, refer to the 'Universal Serial Bus Specifications Revision 2.0', which can be found on the website http://www.usb.org.

Over-current protection for USB ports can be implemented by using power distribution switches on the Carrier Board that monitor the USB port power lines. Power distribution switches usually have a soft-start circuitry that minimizes inrush current in applications where highly capacitive loads are employed. Transient faults are internally filtered.

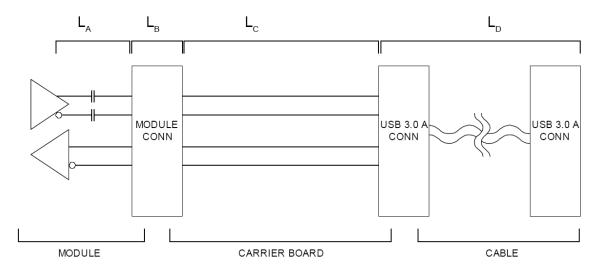
Additionally, they offer a fault status output that is asserted during over-current and thermal shutdown conditions. These outputs should be connected to the corresponding COM Express Modules USB over-current sense signals. Fault status signaling is an option at the USB specification. If you don't need the popup message in your OS you may leave the signals USB\_0\_1\_OC#, USB\_2\_3\_OC#, unconnected.

Fault status signals are connected by a pullup resistor to VCC\_3V3\_SBY on COM Express Module. Please check your tolerance on a USB port with VCC\_5V supply.

USB 2.0 port's VCC current limit should be set to 500mA. For USB 3.0 implementations, the VCC current limit is raised to 1A. A different, USB 3.0 compatible, power switch is used.

### 2.8.1.2 EMI / ESD Protection

To improve the EMI behavior of the USB interface, a design should include common mode chokes, which have to be placed as close as possible to the USB connector signal pins.

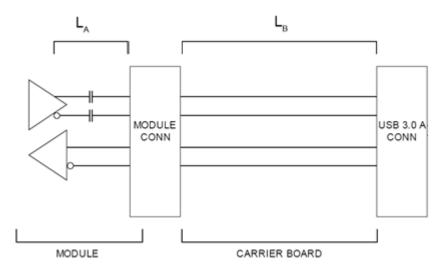

Common mode chokes can provide required noise attenuation but they also distort the signal quality of FullSpeed, HighSpeed and SuperSpeed signaling. Therefore, common mode chokes should be chosen carefully to meet the requirements of the EMI noise filtering while retaining the integrity of the USB signals on the Carrier Board design.

To protect the USB host interface of the Module from over-voltage caused by electrostatic discharge (ESD) and electrical fast transients (EFT), low capacitance steering diodes and transient voltage suppression diodes have to be implemented on the Carrier Board design.

## 2.8.2 USB3.0 Routing Guidelines

USB3.0 Insertion Loss Budget

### Figure 22: USB3.0 Insertion Loss Budget




### Table 25: USB3.0 Insertion Loss Budget

| Segment        | Loss (dB) | Notes                                                            |  |  |
|----------------|-----------|------------------------------------------------------------------|--|--|
| L <sub>A</sub> | 1.94      | Up to 3 inches of Module trace @ 2.5 GHz                         |  |  |
| L <sub>B</sub> | 1.20      | COM Express connector at 2.5 GHz                                 |  |  |
|                | 2.04      | Up to 5 inches of Carrier Board trace @ 2.5 GHz with Common-Mode |  |  |
| L <sub>C</sub> | 3.64      | Component                                                        |  |  |
| Total          | 6.78      |                                                                  |  |  |

## 2.8.3 USB3.0 Trace Length Guidelines

Figure 23: Topology for USB3.0



#### Table 26: USB3.0 Trace Length Guidelines

| Parameter                      | Main Route Guidelines                         | Notes |
|--------------------------------|-----------------------------------------------|-------|
| Signal Group                   | USB3.0                                        |       |
| Differential Impedance Target  | 85Ω ±10%                                      |       |
| Single End                     | 55Ω ±10%                                      |       |
| Spacing between pairs-to-pairs | 9H (MS) and 5H (DS)                           | 1, 2  |
| (inter-pair) (s)               |                                               |       |
| Spacing between differential   | 11H (MS) and 7H (DS)                          | 1     |
| pairs and high-speed periodic  |                                               |       |
| signals                        |                                               |       |
| Spacing between differential   | 11H (MS) and 7H (DS)                          | 1     |
| pairs and low-speed non        |                                               |       |
| periodic signals               |                                               |       |
| LA                             | Please see the SOM-5992 Layout Checklist      |       |
| LB                             | Carrier Board Length                          |       |
| Max length of LA+LB            | 10"                                           |       |
| Length matching                | Differential pairs (intra-pair): Max. ±2 mils |       |
| Reference Plane                | GND referencing preferred                     |       |
| Spacing from edge of plane     | Min. 40mils                                   |       |
| Carrier Board Via Usage        | Max. 3 vias per differential signal trace     |       |

Notes:

1.H is height above reference plane.

2.Spacing pairs to pairs are TX to TX or RX to RX(Noninterleaved )

## 2.9 SATA

Support for up to two SATA ports is defined on the COM Express A-B connector. Support for a minimum of 0 port is required for Module Type 7. Serial ATA links for support of existing SATA-150 (revision 1.0, 1.5Gb/s), SATA-300 (revision 2.0, 3Gb/s), and SATA-600 (revision 3.0, 6Gb/s) devices. The COM Express Specification addresses both in the section on insertion losses.

SATA devices can be internal to the system or external. The eSATA specification defines the connector used for external SATA devices. The eSATA interface must be designed to prevent damage from ESD, comply with EMI limits, and withstand more insertion/removals cycles than standard SATA. A specific eSATA connector was designed to meet these needs. The eSATA connector does not have the "L" shaped key, and because of this, SATA and eSATA cables cannot be interchanged.

## 2.9.1 SATA Signal Definitions

Table 27: SATA Signal Definitions

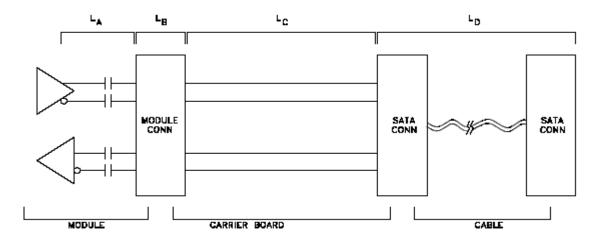
| Signal    | Pin# | Description                                              | I/O    | Note |
|-----------|------|----------------------------------------------------------|--------|------|
| SATA0_RX+ | A19  | Serial ATA channel 0, Receive input differential pair.   | I SATA |      |
| SATA0_RX- | A20  | Module has integrated AC Coupling capacitor              |        |      |
|           |      | Carrier Board:                                           |        |      |
|           |      | Connect to SATA0 Conn pin 6 RX+                          |        |      |
|           |      | Connect to SATA0 Conn pin 5 RX-                          |        |      |
|           |      | N/C if not used.                                         |        |      |
| SATA0_TX+ | A16  | Serial ATA channel 0, Transmit output differential pair. | O SATA |      |
| SATA0_TX- | A17  | Module has integrated AC Coupling capacitor              |        |      |
|           |      | Carrier Board:                                           |        |      |
|           |      | Connect to SATA0 Conn pin 2 TX+                          |        |      |
|           |      | Connect to SATA0 Conn pin 3 TX-                          |        |      |
|           |      | N/C if not used.                                         |        |      |
| SATA1_RX+ | B19  | Serial ATA channel 1, Receive input differential pair.   | I SATA |      |
| SATA1_RX- | B20  | Module has integrated AC Coupling capacitor              |        |      |
|           |      | Carrier Board:                                           |        |      |
|           |      | Connect to SATA1 Conn pin 6 RX+                          |        |      |
|           |      | Connect to SATA1 Conn pin 5 RX-                          |        |      |
|           |      | N/C if not used.                                         |        |      |

| Signal    | Pin# | Description                                                       | I/O      | Note  |
|-----------|------|-------------------------------------------------------------------|----------|-------|
| SATA1_TX+ | B16  | Serial ATA channel 1, Transmit output differential pair.          | O SATA   |       |
| SATA1_TX- | B17  | Module has integrated AC Coupling capacitor                       |          |       |
|           |      | Carrier Board:                                                    |          |       |
|           |      | Connect to SATA1 Conn pin 2 TX+                                   |          |       |
|           |      | Connect to SATA1 Conn pin 3 TX-                                   |          |       |
|           |      | N/C if not used.                                                  |          |       |
| SATA_ACT# | A28  | Serial ATA activity LED. Open collector output pin driven         | I/O 3.3V | Able  |
|           |      | during SATA command activity.                                     | CMOS     | to    |
|           |      | Module has integrated PU resistor                                 |          | drive |
|           |      | Carrier Board:                                                    |          | 10    |
|           |      | Connect to LED and current limiting resistors 250 to 330 $\Omega$ |          | mA    |
|           |      | to 3.3V                                                           |          |       |
|           |      | N/C if not used.                                                  |          |       |

Notes:

## 2.9.2 SATA Routing Guidelines

### SATA Insertion Loss Budget


The Serial ATA source specification provides insertion loss figures only for the SATA cable.


There are several cable types defined with insertion losses ranging from 6 dB up to 16 dB.

Cross talk losses are separate from material losses in the SATA specification.

The COM Express SATA Insertion loss budgets presented below represent the material losses and do not include cross talk losses. The COM Express SATA Insertion loss budgets are a guideline: Module and Carrier Board vendors *should not* exceed the values shown in the tables below.

Figure 24: SATA Insertion Loss Budge





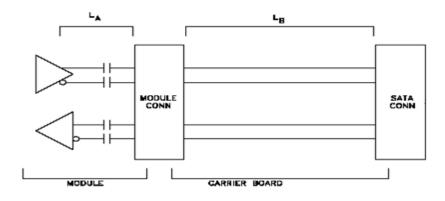
| Segment        | Segment Loss (dB) Notes |                                                                  |  |  |
|----------------|-------------------------|------------------------------------------------------------------|--|--|
| L <sub>A</sub> | 1.26                    | Up to 3.0 inches of module trace @ 0.28 dB / GHz / inch          |  |  |
| Coupling Caps  | 0.40                    |                                                                  |  |  |
| L <sub>B</sub> | 0.25                    | COM Express™ connector at 1.5 GHz measured value                 |  |  |
| L <sub>C</sub> | 3.07                    | 7 Up to 7.2 inches of Carrier Board trace @ 0.28 dB / GHz / inch |  |  |
| L <sub>D</sub> | 6.00                    | Source specification cable and cable connector allowance         |  |  |
| Total          | 10.98                   |                                                                  |  |  |

#### SATA Gen 1 Insertion Loss Budget, 1.5 GHz

SATA Gen 2 Insertion Loss Budget, 3.0 GHz

| Segment        | Loss (dB) | Notes                                                          |  |
|----------------|-----------|----------------------------------------------------------------|--|
| L <sub>A</sub> | 1.68      | Up to 2.0 inches of module trace @ 0.28 dB / GHz / inch        |  |
| Coupling Caps  | 0.40      |                                                                |  |
| L <sub>B</sub> | 0.38      | COM Express™ connector at 3.0 GHz measured value               |  |
| L <sub>C</sub> | 2.52      | Up to 3.0 inches of Carrier Board trace @ 0.28 dB / GHz / inch |  |
| L <sub>D</sub> | 6.00      | Source specification cable and cable connector allowance       |  |
| Total          | 10.98     |                                                                |  |

### 2.9.2.1 General SATA Routing Guidelines


Use the following general routing and placement guidelines when laying out a new design.

- SATA signals must be ground referenced. If changing reference plane is completely unavoidable (that is, ground reference to power reference), proper placement of stitching caps can minimize the adverse effects of EMI and signal quality performance caused by reference plane change. Stitching capacitors are smallvalued capacitors (1 µF or lower in value) that bridge the power and ground planes close to where a high-speed signal changes layers. Stitching caps provide a high frequency current return path between different reference planes. They minimize the impedance discontinuity and current loop area that crossing different reference planes created. The maximum number allowed for SATA to change reference plane is one.
- Route all traces over continuous GND planes, with no interruptions. Avoid crossing over anti-etch if at all possible. Any discontinuity or split in the ground plane can cause signal reflections and should be avoided.
- Minimize layer changes. If a layer change is necessary, ensure that trace matching for either transmit or receive pair occurs within the same layer. Intel recommends to use SATA vias as seldom as possible.
- DO NOT route SATA traces under power connectors, other interface connectors, crystals, oscillators, clock synthesizers, magnetic devices or ICs that use and/or duplicate clocks.
- DO NOT place stubs, test points, test vias on the route to minimize reflection. Utilize vias and connector pads as test points instead.

- For testability, route the TX and RX pairs for a given port on the same layer and close to each other to help ensure that the pairs share similar signaling characteristics. If the groups of traces are similar, a measure of RX pair layout quality can be approximated by using the results from actively testing the TX pair's signal quality.
- Length matching rules are required on SATA differential signals for optimum timing margins, preventing common-mode signals and EMI.Each net within a differentialpair should be length matched on a segment-by-segment basis at the point of discontinuity. Total length mismatch must not be more than 20 mils (0.508 mm). Examples of segments might include breakout areas, routes running between two vias, routes between an AC coupling capacitor and a connector pin, etc. The points of discontinuity would be the via, the capacitor pad, or the connector pin.Matching of TX and RX within the same port and between SATA TX and RX pairs from differential ports is not required. When length matching compensation occurs, it should be made as close as possible to the point where the variation occurs.
- DO NOT serpentine to match RX and TX traces; there is NO requirement to match RX and TX traces. In addition, DO NOT serpentine to meet minimum length guidelines on RX and TX traces.
- Recommend keeping SATA traces 20 mils (0.508 mm) from any vias on the motherboard whenever possible.

## 2.9.3 SATA Trace Length Guidelines

Figure 25: Topology for SATA



### Table 29: SATA Trace Length Guidelines

| Parameter                                                                   | Main Route Guidelines                                                                          | Notes |
|-----------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------|
| Signal Group                                                                | SATA                                                                                           |       |
| Differential Impedance Target                                               | 85 Ω ±10%                                                                                      |       |
| Single End                                                                  | 50~55Ω ±15%                                                                                    |       |
| Signal length available for the                                             | 3 inches, a redriver may be necessary for GEN3                                                 |       |
| COM Express Carrier Board                                                   | signaling rates                                                                                |       |
| Spacing between RX and TX pairs (inter-pair) (s)                            | 9H (MS) and 7H (DS)                                                                            | 1     |
| Spacing between differential pairs and high-speed periodic signals          | 9H (MS) and 7H (DS)                                                                            | 1     |
| Spacing between differential<br>pairs and low-speed non<br>periodic signals | 9H (MS) and 7H (DS)                                                                            | 1     |
| LA                                                                          | Please see the SOM-5992 Layout Checklist                                                       |       |
| LB                                                                          | Carrier Board Length                                                                           |       |
| Max length of LA+LB                                                         | Support Gen3 : "2~5"                                                                           |       |
| Length matching                                                             | Differential pairs (intra-pair): Max. ±5 mils                                                  |       |
| Reference Plane                                                             | GND referencing preferred                                                                      |       |
| Spacing from edge of plane                                                  | Min. 40mils                                                                                    |       |
| Carrier Board Via Usage                                                     | A maximum of 2 vias is recommended.                                                            |       |
| AC Coupling capacitors                                                      | The AC coupling capacitors for the TX and RX lines are incorporated on the COM Express Module. |       |

Notes:

1.H is height above reference plane.

## 2.10 LPC and eSPI Interface \*SOM-5992 is not support eSPI.

The Module LPC and eSPI interfaces share connector pins. A Module design *may* support either LPC or eSPI or both, at the Module vendor's discretion. Module pin ESPI\_EN# is available for the Carrier to signal to the Module whether LPC or eSPI is to be used. The Carrier *shall* leave the ESPI\_EN# unconnected on the Carrier for LPC operation. The Carrier *shall* tie ESPI\_EN# to GND for eSPI operation. The Module *shall* terminate ESPI\_EN# as appropriate to facilitate this.

The LPC bus is a 3.3V bus and eSPI is a 1.8V bus. There is the possibility of a mismatch – an eSPI only Module mated with a LPC only Carrier, or an LPC only Module on an eSPI Carrier. Module designers *should* protect the Module eSPI interface against accidental exposure to 3.3V Carrier LPC signals. Carrier designers *should* protect a Carrier eSPI interface against accidental exposure to 3.3V Module LPC signals. In both cases, a simple and low cost protection scheme *may* be realized with low value in-line series resistors (typically 33 ohms) and BAT54 Schottky diodes on each line. The diode anode is tied to the eSPI device pin and the cathode to the 1.8V supply rail. Ideally, that 1.8V supply rail can sink current. In the event of a mismatch, the offending (Module or Carrier) 3.3V rail is discharged through the series resistor and the Schottky diode to the (Carrier or Module) 1.8V rail and not through the eSPI device.

## 2.10.1 LPC /eSPI Signal Definition

| Signal     | Pin# | Description                                     | I/O      | Note |
|------------|------|-------------------------------------------------|----------|------|
| LPC_SERIRQ | A50  | LPC serialized IRQ.                             | I/O 3.3V |      |
|            |      | Carrier Board:                                  | CMOS     |      |
|            |      | Connect to                                      |          |      |
|            |      | LPC - SERIRQ                                    |          |      |
|            |      | N/C if not used                                 |          |      |
| ESPI_CS1#  |      | ESPI Mode: eSPI Master Chip Select Outputs      | O 1.8V   | 2    |
|            |      | Driving Chip Select# A low selects a particular | Suspend  |      |
|            |      | eSPI slave for the transaction. Each of the     | / 1.8V   |      |
|            |      | eSPI slaves is connected to a dedicated Chip    |          |      |
|            |      | Selectn# pin.                                   |          |      |
|            |      | Carrier Board:                                  |          |      |
|            |      | Connect to                                      |          |      |
|            |      | eSPI Device – eSPI_CS1#                         |          |      |
|            |      | N/C if not used                                 |          |      |

Table 30: LPC/eSPI Interface Signal Definition

| Embed        | dec        | I - IoT                                            | - 34     |                 |
|--------------|------------|----------------------------------------------------|----------|-----------------|
| Signal       | Pin#       | Description                                        | I/O      | Note            |
| LPC_FRAME#   | B3         | LPC frame indicates start of a new cycle or        | O 3.3V   |                 |
|              |            | termination of a broken cycle.                     | CMOS     |                 |
|              |            | Carrier Board:                                     |          |                 |
|              |            | LPC - LFRAME#                                      |          |                 |
|              | -          | N/C if not used                                    |          |                 |
| ESPI_CS0#    |            | ESPI Mode: eSPI Master Chip Select Outputs         | 0 1.8V   | 2               |
|              |            | Driving Chip Select0#. A low selects a particular  | Suspend  |                 |
|              |            | eSPI slave for the transaction. Each of the eSPI   | / 1.8V   |                 |
|              |            | slaves is connected to a dedicated Chip Selectn#   |          |                 |
|              |            | pin.                                               |          |                 |
|              |            | Carrier Board:                                     |          |                 |
|              |            | Connect to                                         |          |                 |
|              |            | eSPI Device – eSPI_CS0#                            |          |                 |
|              |            | N/C if not used                                    |          |                 |
| LPC_AD0      | B4         | LPC multiplexed command, address and data.         | I/O 3.3V |                 |
| LPC_AD1      | B5         | Carrier Board:                                     | CMOS     |                 |
| LPC_AD2      | B6         | Connect to                                         |          |                 |
| LPC_AD3      | B7         | LPC - LAD0 , LAD1, LAD2, LAD3                      |          |                 |
|              |            | N/C if not used                                    |          |                 |
| ESPI_IO_0    |            | ESPI Mode: eSPI Master Data Input / Outputs        | I/O 1.8V | 2               |
| ESPI_IO_1    |            | These are bi-directional input/output pins used to | Suspend  |                 |
| ESPI_IO_2    |            | transfer data between master and slaves.           | / 1.8V   |                 |
| ESPI_IO_3    |            | Multiplexed with LPC_AD[0:3]                       |          |                 |
|              |            | Carrier Board:                                     |          |                 |
|              |            | Connect to                                         |          |                 |
|              |            | eSPI Device – eSPI_IO0, eSPI_IO1, eSPI_IO2,        |          |                 |
|              |            | eSPI_IO3, the Carrier <i>shall</i> have a 33 Ohm   |          |                 |
|              |            | series termination.                                |          |                 |
|              | <b>D</b> 0 | N/C if not used                                    | 10.01/   |                 |
| LPC_DRQ0#    | B8         | LPC encoded DMA/Bus master request.                | 13.3V    | Not all Modules |
| LPC_DRQ1#    | B9         | Carrier Board:                                     | CMOS     | support LPC     |
|              |            | Connect to                                         |          | DMA. Contact    |
|              |            | LPC - LDRQ0#, LDRQ1#                               |          | your vendor for |
|              | -          | N/C if not used                                    |          | information.    |
| ESPI_ALERT0# |            | ESPI Mode: eSPI pins used by eSPI slave to         | I 1.8V   | 2               |
| ESPI_ALERT1# |            | request service from the eSPI master.              | Suspend  |                 |
|              |            | Carrier Board:                                     | / 1.8V   |                 |
|              |            | Connect to                                         |          |                 |
|              |            | eSPI Device – eSPI_ALERT0#, eSPI_ALERT1#.          |          |                 |
|              |            | N/C if not used                                    |          |                 |

| Embed       | dec  | I - IoT                                                            |         |      |
|-------------|------|--------------------------------------------------------------------|---------|------|
| Signal      | Pin# | Description                                                        | I/O     | Note |
| ESPI_RESET# | B18  | ESPI Mode: eSPI Reset Reset the eSPI interface                     | O 1.8V  | 2    |
| /SUS_STAT#  |      | for both master and slaves.                                        | Suspend |      |
|             |      | eSPI Reset# is typically driven from eSPI master                   | / 1.8V  |      |
|             |      | to eSPI slaves.                                                    |         |      |
|             |      | Carrier Board:                                                     |         |      |
|             |      | Connect to                                                         |         |      |
|             |      | eSPI Device – eSPI_RESET#                                          |         |      |
|             |      | N/C if not used                                                    |         |      |
| ESPI_EN#    | B47  | This signal is used by the Carrier to indicate the                 | I NA    | 2    |
|             |      | operating mode of the LPC/eSPI bus. If left                        | CMOS    |      |
|             |      | unconnected on the carrier, LPC mode (default)                     |         |      |
|             |      | is selected. If pulled to GND on the carrier, eSPI                 |         |      |
|             |      | mode is selected. This signal is pulled to a logic                 |         |      |
|             |      | high on the module through a resistor. The                         |         |      |
|             |      | Carrier <i>should</i> only float this line or <b>pull it low</b> . |         |      |
|             |      | Carrier Board:                                                     |         |      |
|             |      | Connect to                                                         |         |      |
|             |      | N/C : LPC mode                                                     |         |      |
|             |      | GND: eSPI mode                                                     |         |      |
| LPC_CLK     | B10  | LPC clock output 24MHz.                                            | O 3.3V  |      |
|             |      | Carrier Board:                                                     | CMOS    |      |
|             |      | Connect to                                                         |         |      |
|             |      | LPC - LCLK                                                         |         |      |
|             |      | N/C if not used                                                    |         |      |
| ESPI_CK     |      | ESPI Mode: eSPI Master Clock Output This pin                       | O 1.8V  | 2    |
|             |      | provides the reference timing for all the serial                   | Suspend |      |
|             |      | input and output operations.                                       | / 1.8V  |      |
|             |      | Carrier Board:                                                     |         |      |
|             |      | Connect to                                                         |         |      |
|             |      | eSPI Device – eSPI_CLK, the Carrier <b>shall</b> have              |         |      |
|             |      | a 33 Ohm series termination.                                       |         |      |
|             |      | N/C if not used                                                    |         |      |

Note:

1. Implementing external LPC devices on the COM Express Carrier Board always requires customization of the COM Express Module's BIOS in order to support basic initialization for those LPC devices. Otherwise the functionality of the LPC devices will not be supported by a Plug&Play or ACPI capable system.

2. SOM-5992 is not support eSPI.

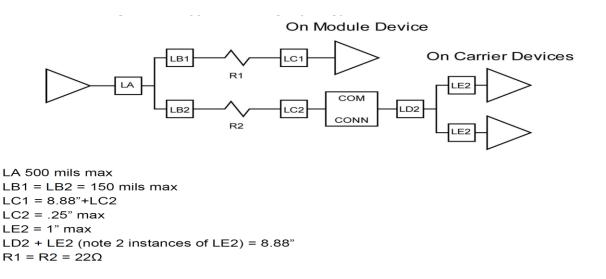
### 2.10.2 LPC Routing Guidelines

### 2.10.2.1 General Signals

LPC signals are similar to PCI signals and may be treated similarly. Route the LPC bus as 50  $\Omega$ , single-ended signals. The bus may be referenced to ground (preferred), or to a well-bypassed power plane or a combination of the two. Point-to-point (daisy-chain) routing is preferred, although stubs up to 1.5 inches may be acceptable. Length-matching among LPC\_AD[3:0], LPC\_FRAME# are needed

### 2.10.2.2 Bus Clock Routing

Route the LPC clock as a single-ended, 50  $\Omega$  trace with generous clearance to other traces and to itself. A continuous ground-plane reference is recommended. Routing the clock on a single ground referenced internal layer is preferred to reduce EMI.


The LPC clock implementation should follow the routing guidelines for the PCI clock defined in the COM Express specification and the 'PCI Local Bus Specification Revision 2.3'.

### 2.10.2.3 Carrier Board LPC Devices

Carrier Board LPC devices *should* be clocked with the LPC clock provided by the Module interface. If the Carrier Board has two loads on the LPC clock these loads *should* be connected to the common clock without a buffer. The Carrier Board *should* not have more than two loads on the LPC clock. Carrier Board LPC devices *should* be reset with signal CB\_RESET#.

A typical routing topology for a Module LPC device and two Carrier Board LPC devices clock is shown below. This topology is used by Modules that start and stop the LPC clock on the fly. In this case, a buffer cannot be used and all LPC devices must share a common clock.

Figure 26: Typical routing topology for a Module LPC device



### 2.10.2.4 eSPI Devices

At the time of this writing, the use case and design rules for eSPI are still being developed.

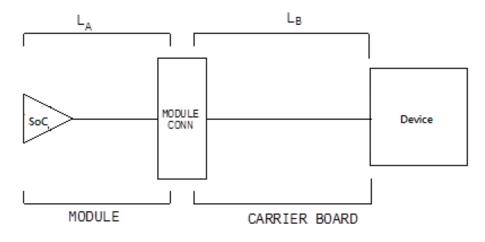
Designers of Modules and Carriers are provided with the following guidance:

The maximum trace length for Carrier routed eSPI traces *shall not* exceed 4.5".

Carrier routed ESPI traces *shall* be routed at 50 Ohms.

Carrier routed SPI traces *shall* have 5 mil via to via clearance, 4 mil trace to via clearance, and 10 mil clearance to any other traces.

The Carrier *shall* have a 33 Ohm series termination between 0.5" and 1" of the target device on the ESPI\_CK signal.


The Carrier *shall* have a 33 Ohm series termination between 0.5" and 1" of the target device on the ESPI\_IO\_[0..3] signals.

The Carrier *shall* length match ESPI\_CK and ESPI\_IO\_[0..3] within 250mils.

The Carrier *shall* length match eSPI\_CK and ESPI\_CS within 100mils.

## 2.10.3 LPC Trace Length Guidelines

Figure 27: Topology for LPC



### Table 31: LPC Trace Length Guidelines

| Parameter                      | Main Route Guidelines                    | Notes |
|--------------------------------|------------------------------------------|-------|
| Signal Group                   | LPC                                      |       |
| Single End                     | 50~55Ω ±10%                              |       |
| Nominal Trace Space within LPC | Min. 15mils                              |       |
| Signal Group                   |                                          |       |
| Spacing to Other Signal Group  | Min. 15mils                              |       |
| LA                             | Please see the SOM-5992 Layout Checklist |       |
| LB                             | Carrier Board Length                     |       |
| Max length of LA+LB            | 23"                                      |       |
| Length matching between single | Max. 250mils                             |       |
| ended signals                  |                                          |       |
| Length matching between clock  | Max. 250mils                             |       |
| signals                        |                                          |       |
| Reference Plane                | GND referencing preferred.               |       |
| Via Usage                      | Try to minimize number of vias           |       |

Notes:



## 2.11 SPI – Serial Peripheral Interface Bus

The SPI bus is used to support SPI-compatible flash devices. The SPI flash device can be up to 16 MB (128 Mb). The SPI bus is clocked at either 20 MHz, 25 MHz, 33 MHz or 50 MHz. SPI devices selected *should* support one of these frequencies.

In COM.0 Rev 2, the SPI interface was defined as a 3.3V interface. With COM.0 Rev 3, the SPI interface *may* be either 3.3V or 1.8V, as is best for the Module chipset at hand.

## 2.11.1 SPI Signal Definition

Table 32: SPI Interface Signal Definition

| Signal   | Pin# | Description                                                | I/O          | Note |
|----------|------|------------------------------------------------------------|--------------|------|
| SPI_CS#  | B97  | Chip select for Carrier Board SPI – may be                 | O CMOS       |      |
|          |      | sourced from chipset SPI0 or SPI1                          | 3.3V Suspend |      |
|          |      | Carrier Board:                                             | or 3.3V S0   |      |
|          |      | Connect to SPI flash pin 1 Chip Select                     | 1.8V Suspend |      |
|          |      | N/C if not used                                            | or 1.8V S0   |      |
| SPI_MISO | A92  | Data in to Module from Carrier SPI                         | I CMOS       |      |
|          |      | Carrier Board:                                             | 3.3V Suspend |      |
|          |      | Connect 15~33 $\Omega$ in series to SPI flash pin 2 Serial | or 3.3V S0   |      |
|          |      | Output                                                     | 1.8V Suspend |      |
|          |      | N/C if not used                                            | or 1.8V S0   |      |
| SPI_MOSI | A95  | Data out from Module to Carrier SPI                        | O CMOS       |      |
|          |      | Carrier Board:                                             | 3.3V Suspend |      |
|          |      | Connect 33~47 $\Omega$ in series to SPI flash pin 5 Serial | or 3.3V S0   |      |
|          |      | Input                                                      | 1.8V Suspend |      |
|          |      | N/C if not used                                            | or 1.8V S0   |      |
| SPI_CLK  | A94  | Clock from Module to Carrier SPI                           | O CMOS       |      |
|          |      | Carrier Board:                                             | 3.3V Suspend |      |
|          |      | Connect 33~47 $\Omega$ in series to SPI flash pin 6 Clock  | or 3.3V S0   |      |
|          |      | N/C if not used                                            | 1.8V Suspend |      |
|          |      |                                                            | or 1.8V S0   |      |

| Signal      | Pin# | Description                                               | I/O        | Note |
|-------------|------|-----------------------------------------------------------|------------|------|
| SPI_POWER   | A91  | Power supply for Carrier Board SPI – sourced from         | 0          |      |
|             |      | Module – nominally 3.3V. The Module shall provide         | 3.3V       |      |
|             |      | a minimum of 100mA on SPI_POWER.                          | Suspend    |      |
|             |      | Carriers shall use less than 100mA of SPI_POWER.          | or 3.3V S0 |      |
|             |      | SPI_POWER shall only be used to power SPI                 | 1.8V       |      |
|             |      | devices on the Carrier.                                   | Suspend    |      |
|             |      | Carrier Board:                                            | or 1.8V S0 |      |
|             |      | Connect to SPI flash pin 8 VDD                            |            |      |
|             |      | N/C if not used                                           |            |      |
| BIOS_DIS0#  | A34  | Selection strap to determine the BIOS boot device.        | I CMOS     |      |
| / ESPI_SAFS |      | The Carrier should only float these or pull them low,     |            |      |
|             |      | please refer to Table X: BIOS Selection Straps.           |            |      |
|             |      | Carrier Board:                                            |            |      |
|             |      | 1 - N/C                                                   |            |      |
|             |      | 0 - PD 1K to GND                                          |            |      |
| BIOS_DIS1#  | B88  | Selection strap to determine the BIOS boot device.        | I CMOS     |      |
|             |      | The Carrier should only float these or pull them low,     |            |      |
|             |      | please refer to Table X: BIOS Selection Straps.           |            |      |
|             |      | Carrier Board:                                            |            |      |
|             |      | 1 - N/C                                                   |            |      |
|             |      | 0 - PD 1K to GND                                          |            |      |
| ESPI_EN#    | B47  | This signal is used by the Carrier to indicate the        | 1          | 1    |
|             |      | operating mode of the LPC/eSPI bus. If left               | CMOS       |      |
|             |      | unconnected on the carrier, LPC mode (default) is         |            |      |
|             |      | selected. If pulled to GND on the carrier, eSPI mode      |            |      |
|             |      | is selected. This signal is pulled to a logic high on the |            |      |
|             |      | module through a resistor. The Carrier <i>should</i> only |            |      |
|             |      | float this line or <b>pull it low</b> .                   |            |      |
|             |      | please refer to Table33: BIOS Selection Straps.           |            |      |
|             |      | Carrier Board:                                            |            |      |
|             |      | 1 - N/C                                                   |            |      |
|             |      | 0 - PD 1K to GND                                          |            |      |

Note:

1. SOM-5992 is NC.

### SPI Power

Introducing a SPI\_POWER pin is desirable because some Module implementations will have the SPI power domain in power state S0 and others in S5. It is easier for Carrier Board designers to take the Carrier SPI power from a pin on the Module.

The SPI\_POWER voltage level was defined as 3.3V in COM.0 Rev. 2. With COM.0 Rev. 3, the SPI\_POWER voltage level *may* be 3.3V or 1.8V. This allows the Carrier SPI interface to operate at the level appropriate for the Module chipset, without the use of level shifters.

Module designs that implement a 1.8V Carrier SPI interface *should* protect themselves against possible exposure to 3.3V Carrier SPI signals.

Carrier designs that implement a 1.8V SPI interface *should* protect themselves against possible exposure to 3.3V Module SPI signals.

#### Module Vs Carrier Board Pull-ups

There *shall* not be any Carrier Board pull-ups or pull-downs on the five SPI\_x signals. All such terminations *shall* be on the Module. The Module designer *shall* determine the correct power domain that these signals are terminated to.

Note: Carrier Board *shall* implement pull-ups to SPI\_POWER on the SPI flash pins HOLD# and WP# which are not supported on the COM Express connector.

## 2.11.2 BIOS Boot Selection

For COM.0 R3, the Module Carrier based BIOS options have been expanded to support eSPI devices. A third pin that affects the BIOS location, named ESPI\_EN#, works in conjunction with BIOS\_DIS1# and BIOS\_DIS0# to define the BIOS boot path. Additionally, the concepts of Master Attached Flash Sharing (MAFS) and Slave Attached Flash Sharing (SAFS) are introduced.

LPC bus BIOS FWH support is removed in COM.0 R3. SPI and eSPI BIOS options are supported.

### SPI Boot Flash Background

Contemporary Intel x86 systems requires that the SPI boot flash to be divided into a number of regions that may include:

- Descriptor
- BIOS code
- Management Engine (ME) code
- GBE parameters
- Platform data

The Descriptor defines where the other regions are in the SPI device(s). The Descriptor is always at the bottom of the first SPI device, the SPI device that is selected by chipset SPI0 chip-select (chipset SPI\_CS0#).

The first two regions, the Descriptor and the BIOS, are mandatory. The other regions are optional. The regions may all be packed into the same SPI device, or may be divided between more than one SPI device, although the Descriptor has to be at the bottom of the first SPI device. In most situations, all the SPI regions are packed into a single SPI device that is either on the Module or on the Carrier. Designers may have reasons for dividing the SPI boot flash regions between devices.

COM Express Rev 2 and Rev 3 define a SPI interface on the COM Express connector. The COM Express SPI interface has only one chip select. Chipsets typically have 2 SPI chip selects. Module hardware may steer those chipset chip selects to an on-Module SPI device or devices or to a single off-module SPI device. The chip select steering is defined by the ESPI\_EN#, BIOS\_DIS1# and BIOS\_DIS0# signals.'BIOS Selection Straps' below.

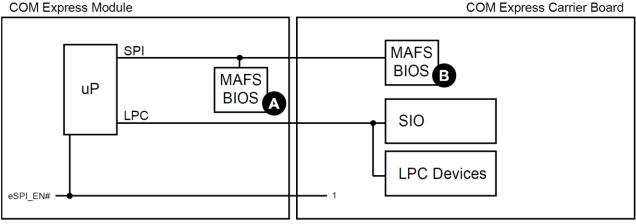
The BIOS Entry point *may* be in SPI0 or SPI1 as determined by the descriptor table in the SPI0 device. The Module *may* have one or two SPI devices. Carrier Boards *may* have zero or one SPI devices.



### MAFS and SAFS BIOS Configurations

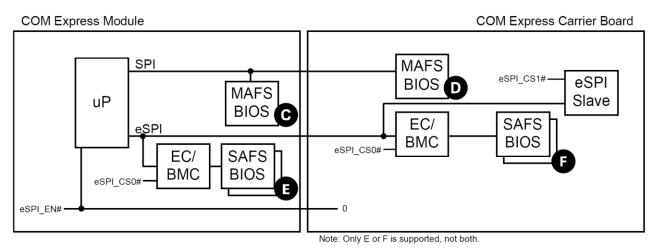
Master Attached Flash Sharing (MAFS) is defined as the BIOS Flash directly attached to the processor SPI bus.

Slave Attached Flash Sharing (SAFS) is defined as the BIOS Flash being attached behind a board Management Controller (BMC) or Embedded Controller (EC).


MAFS and SAFS configurations apply to both LPC and eSPI enabled configurations. Refer to Figure27 'BIOS Selection LPC Mode' and Figure 28 'BIOS Selection eSPI Mode' below.

Please note that some of the features shown in these figures are mutually exclusive.

### Figure 28: BIOS Selection LPC Mode


### LPC Mode

COM Express Module



### Figure 29: BIOS Selection eSPI Mode

#### eSPI Mode



The A and, B notations in the figure26 above and the B, C, D and F notations in figure27 above are referenced in the table and text sections below. Note also that some of the features shown in these figures are mutually exclusive.

| ESPI_EN# | BIOS_DIS1# | BIOS_DIS0# | Boot Bus | RRS | Chipset<br>ESPI_CS0# | Carrier<br>ESPI_CS0#<br>Pin | Chipset<br>SPI_CS1# | Chipset<br>SPI_CS0#<br>Destination | Carrier<br>SPI_CS#<br>Pin | SPI<br>Descriptor | Ref to<br>Images | Notes      |
|----------|------------|------------|----------|-----|----------------------|-----------------------------|---------------------|------------------------------------|---------------------------|-------------------|------------------|------------|
| 1        | 0          | 0          | SPI      | 0   | -                    | -                           | Carrier             | Module                             | SPI1                      | Module            | А                | MAFS on    |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | Module.    |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | LPC bus    |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | enabled.   |
| 1        | 0          | 1          | SPI      | 0   | -                    | -                           | Module              | Carrier                            | SPI0                      | Carrier           | В                | MAFS on    |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | Carrier.   |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | LPC bus    |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | enabled.   |
| 1        | 1          | 0          | -        | 0   | -                    | -                           | -                   | -                                  | High                      | -                 | -                | Not used - |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | was FWH    |
| 1        | 1          | 1          | SPI      | 0   | -                    | -                           | Module              | Module                             | High                      | Module            | А                | MAFS on    |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | Module.    |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | LPC bus    |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | enabled.   |
| 0        | 0          | 0          | SPI      | 0   | -                    | -                           | Carrier             | Module                             | SPI1                      | Module            | С                | MAFS on    |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | Module.    |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | ESPI bus   |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | enabled.   |
| 0        | 0          | 1          | SPI      | 0   | -                    | -                           | Module              | Carrier                            | SPI0                      | Carrier           | D                | MAFS on    |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | Carrier.   |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | ESPI bus   |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | enabled.   |
| 0        | 1          | 0          | eSPI     | 1   | Module               | -                           | -                   | -                                  | SPI0                      | Module            | E                | SAFS and   |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | BMC on     |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | Module.    |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | ESPI bus   |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | enabled.   |
| 0        | 1          | 1          | eSPI     | 1   | Carrier              | Chipset                     | -                   | -                                  | SPI0                      | Carrier           | E                | SAFS and   |
|          |            |            |          |     |                      | ESPI_CS0#                   |                     |                                    |                           |                   |                  | BMC on     |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | Carrier.   |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | ESPI bus   |
|          |            |            |          |     |                      |                             |                     |                                    |                           |                   |                  | enabled.   |

### Table 33: BIOS Selection Straps

The BBS (BIOS Boot Select) is a signal to the chipset that indicates if the system is using a MAFS (Master Attached File Sharing) or SAFS (Slave attached File Sharing) setup. The BBS signal *may* be formed by Module logic looking for ESPI\_EN# low and BIOS\_DIS1# high.

The ESPI\_CS1# line is not used for BIOS boot functions; it may be used to attach a secondary slave device to the eSPI bus, if the chip select is available.



The first four lines in Table 33 above are backwards compatible with the SPI BIOS options described in COM.0 Rev. 2, except that LPC FWH support is removed in COM.0 Rev 3. The LPC bus is enabled and is available for use on the Module or the Carrier for peripheral devices such as Board Management Controllers (BMC), Embedded Controllers (EC), Super I/O (SIO) or other general purpose devices.

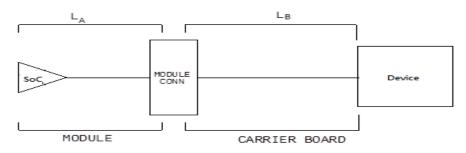
### SPI BIOS MAFS Considerations – eSPI Enabled

In an eSPI enabled MAFS system, the BIOS flash is attached to the system SPI bus, either on-Module or off-Module, much as in the LPC enabled MAFS system described above. The eSPI bus replaces the LPC bus for use with peripheral devices such as BMCs, ECs, SIOs etc. but the BIOS boot path is on the SPI bus.

### eSPI BIOS SAFS Considerations - eSPI Enabled

In an eSPI enabled SAFS system, the SPI boot device is located on the far side of a BMC or EC. The system can boot from either a Module SAFS (in Figure 27 above) or a Carrier SAFS (in Figure 27 above). The BIOS boot traffic is routed through the BMC or EC to the system eSPI bus and on to the chipset.

It is possible for both a Module and a Carrier SAFS to be present in a system, but only one can be enabled. This is accomplished by routing the ESPI\_CS0# signal to the Module or the Carrier, but never both. This is by definition of the eSPI specification. A second ESPI\_CS1# is available to select eSPI slave devices. Slave devices can be on the Module or the Carrier.


Two eSPI alert pins are provided. Additional alert pins are permitted by the eSPI specification through alert pin sharing on the EC/BMC or by signal tunneling.

## 2.11.3 SPI Routing Guidelines

NA

## 2.11.4 SPI Trace Length Guidelines

Figure 30: Topology for SPI



### Table 34: SPI Trace Length Guidelines

| Parameter                      | Main Route Guidelines                    | Notes |
|--------------------------------|------------------------------------------|-------|
| Signal Group                   | SPI                                      |       |
| Single End                     | 50Ω ±10%                                 |       |
| Nominal Trace Space within SPI | Min. 10mils                              |       |
| Signal Group                   |                                          |       |
| Spacing to Other Signal Group  | Min. 10mils                              |       |
| LA                             | Please see the SOM-5992 Layout Checklist |       |
| LB                             | Carrier Board Length                     |       |
| Max length of LA+LB            | 6.5"                                     |       |
| SPI CLOCK to MOSI and CLOCK    | Max. 500mils                             |       |
| to SPI_CS Maximum Pin to Pin   |                                          |       |
| Length Mismatch                |                                          |       |
| Via Usage                      | Try to minimize number of vias           |       |

Notes:

## 2.12 General Purpose I2C Bus Interface

The I2C port *shall* be available in addition to the SMBus. The I2C clock *shall* support 100kHz and *should* support 400kHz operation. The maximum capacitance on the Carrier Board *shall* not exceed 100pF. The I2C interface *should* support multi-master operation. This capability will allow a Carrier to read an optional Module EEPROM before powering up the Module.

Revision 1.0 of the specification placed the I2C interface on the non-standby power domain. With this connection, the I2C interface can only be used when the Module is powered on. Since the I2C interface is used to connect to an optional Carrier EEPROM and since it is desirable to allow a Module based board controller access to the optional Carrier EEPROM before the Module is powered on, revision 3.x of this specification changes the power domain of the I2C interface to standby-power allowing access during power down and suspend states. There is a possible leakage issue that can arise when using a R3.x Module with a R2.1 Carrier that supports I2C devices. The R2.1 Carrier will power any I2C devices from the non-standby power rail. A R3.x Module will pull-up the I2C clock and data lines to the standby-rail through a 2.2K resistor. The difference in the power domains on the Module and Carrier can provide a leakage path from the standby power rail to the non-standby power rail.

### 2.12.1 Signal Definitions

The general purpose I2C Interface is powered from 3.3V suspend rail. The I2C\_DAT is an open collector line with a pull-up resistor located on the Module. The I2C\_CK has a pull-up resistor located on the Module. The Carrier should not contain pull-up resistors on the I2C\_DAT and I2C\_CK signals. Carrier based devices should be powered from 3.3V suspend voltage. The use of main power line for a Carrier I2C device will require a bus isolator to prevent leakage to other I2C devices on 3.3V power.

At this time, there is no allocation of I2C addresses between the Module and Carrier. Carrier designers will need to consult with Module providers for address ranges that can be used on the Carrier.

| neral Pu | rpose I2C Interface Signal Descriptions         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|----------|-------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Pin#     | Description                                     | I/O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Pwr Rail                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Note                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| B33      | General Purpose I2C Clock output                | I/O OD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | Carrier Board:                                  | CMOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Suspend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | 3.3VSB I2C device - Connect to SCL of I2C       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | / 3.3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | device.                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | 3.3V I2C device - Connect 3.3V isolation        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | circuit controlled by COME pin B24 PWR_OK       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | to SCL of I2C device.                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | 5VSB I2C device - Connect 5VSB Level            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | Shifter to SCL of I2C device.                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | 5V I2C device – Connect an 5V isolation circuit |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | controlled by COME pin B24 PWR_OK to SCL        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | of I2C device.                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | N/C if not used                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| B34      | General Purpose I2C data I/O line.              | I/O OD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 3.3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | Carrier Board:                                  | CMOS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Suspend                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | 3.3VSB I2C device - Connect to SDA of I2C       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | / 3.3V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | device.                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | 3.3V I2C device - Connect 3.3V isolation        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | circuit controlled by COME pin B24 PWR_OK       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | to SDA of I2C device                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | 5VSB I2C device - Connect 5VSB Level            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | Shifter to SDA of I2C device                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|          | Pin#<br>B33                                     | <ul> <li>B33 General Purpose I2C Clock output</li> <li>Carrier Board:</li> <li>3.3VSB I2C device - Connect to SCL of I2C</li> <li>device.</li> <li>3.3V I2C device - Connect 3.3V isolation</li> <li>circuit controlled by COME pin B24 PWR_OK</li> <li>to SCL of I2C device.</li> <li>5VSB I2C device - Connect 5VSB Level</li> <li>Shifter to SCL of I2C device.</li> <li>5V I2C device - Connect an 5V isolation circuit</li> <li>controlled by COME pin B24 PWR_OK to SCL</li> <li>of I2C device.</li> <li>N/C if not used</li> <li>B34 General Purpose I2C data I/O line.</li> <li>Carrier Board:</li> <li>3.3VSB I2C device - Connect 5.3V isolation</li> <li>circuit controlled by COME pin B24 PWR_OK to SDA of I2C</li> <li>device.</li> <li>3.3V I2C device - Connect 3.3V isolation</li> <li>circuit controlled by COME pin B24 PWR_OK</li> <li>to SDA of I2C device</li> <li>5VSB I2C device - Connect 5VSB Level</li> </ul> | Pin#DescriptionI/OB33General Purpose I2C Clock outputI/O ODCarrier Board:CMOS3.3VSB I2C device - Connect to SCL of I2Cdevice.3.3V I2C device - Connect 3.3V isolationcircuit controlled by COME pin B24 PWR_OKto SCL of I2C device.5VSB I2C device - Connect 5VSB LevelShifter to SCL of I2C device.5V I2C device - Connect an 5V isolation circuitcontrolled by COME pin B24 PWR_OK to SCLof I2C device.5V I2C device - Connect an 5V isolation circuitcontrolled by COME pin B24 PWR_OK to SCLof I2C device.N/C if not usedB34General Purpose I2C data I/O line.I/O ODCarrier Board:3.3VSB I2C device - Connect to SDA of I2Cdevice.3.3V I2C device - Connect 3.3V isolationcircuit controlled by COME pin B24 PWR_OKto SDA of I2C deviceSOM of I2C deviceSOM of I2C deviceSVSB I2C device - Connect 5VSB LevelSVSB I2C device | Pin#DescriptionI/OPwr RailB33General Purpose I2C Clock outputI/O OD3.3VCarrier Board:CMOSSuspend3.3VSB I2C device - Connect to SCL of I2C/ 3.3Vdevice.3.3V I2C device - Connect 3.3V isolation/ 3.3Vcircuit controlled by COME pin B24 PWR_OKto SCL of I2C device./ 3.3VSVSB I2C device - Connect 5VSB LevelShifter to SCL of I2C device./ 4.4Shifter to SCL of I2C device.SV I2C device - Connect an 5V isolation circuit/ 4.4controlled by COME pin B24 PWR_OK to SCLof I2C device./ 4.4SV I2C device.N/C if not usedI/O OD3.3VB34General Purpose I2C data I/O line.I/O OD3.3VCarrier Board:3.3V SB I2C device - Connect to SDA of I2C/ 3.3Vdevice.3.3V I2C device - Connect 3.3V isolation/ 3.3VSuspend3.3VSB I2C device - Connect 5VSB Level/ 3.3VB34General Purpose I2C data I/O line.I/O OD3.3Vcarrier Board:3.3V I2C device - Connect 5VSB Level/ 3.3VSUSP I2C device - Connect 5VSB LevelI/O OD3.3V |

5V I2C device - Connect an 5V isolation circuit controlled by COME pin B24 PWR\_OK to SDA

## 2.12.2 I2C Routing Guidelines

of I2C device N/C if not used

NA

## 2.12.3 I2C Trace Length Guidelines

Figure 31: Topology for I2C

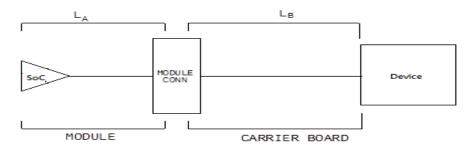



Table 36: I2C Trace Length Guidelines

| Parameter                      | Main Route Guidelines                    | Notes |
|--------------------------------|------------------------------------------|-------|
| Signal Group                   | 12C                                      |       |
| Single End                     | 50Ω ±15%                                 |       |
| Nominal Trace Space within I2C | Min. 10mils                              |       |
| Signal Group                   |                                          |       |
| Spacing to Other Signal Group  | Min. 10mils                              |       |
| LA                             | Please see the SOM-5992 Layout Checklist |       |
| LB                             | Carrier Board Length                     |       |
| Max length of LA+LB            | ASPA                                     |       |
| Length Mismatch                | NA                                       |       |
| Via Usage                      | Try to minimize number of vias           |       |

Notes:

### 2.12.4 Connectivity Considerations

The maximum amount of capacitance allowed on the Carrier General Purpose I2C bus lines (I2C\_DAT, I2C\_CK) is specified by Advantech's Module. The Carrier designer is responsible for ensuring that the maximum amount of capacitance is not exceeded and the rise/fall times of the signals meet the I2C bus specification. As a general guideline, an IC input has 8pF of capacitance, and a PCB trace has 3.8pF per inch of trace length.

## 2.13 System Management Bus (SMBus)

The SMBus is primarily used as an interface to manage peripherals such as serial presence detect (SPD) on RAM, thermal sensors, PCIe devices, smart battery, etc. The devices that can connect to the SMBus can be located on the Module and Carrier. Designers need to take note of several implementation issues to ensure reliable SMBus interface operation. The SMBus is similar to I2C. I2C devices have the potential to lock up the data line while sending information and require a power cycle to clear the fault condition. SMBus devices contain a timeout to monitor for and correct this condition. Designers are urged to use SMBus devices when possible over standard I2C devices. COM Express Modules are required to power SMBus devices from Early Power in order to have control during system states S0-S5. The devices on the Carrier Board using the SMBus are normally powered by the 3.3V main power. To avoid current leakage between the main power of the Carrier Board and the Suspend power of the Module, the SMBus on the Carrier Board must be separated by a bus switch from the SMBus of the Module. However, if the Carrier Board also uses Suspend powered SMBus devices that are designed to operate during system states S3-S5, then these devices must be connected to the Suspend powered side of the SMBus, i. e. between the COM Express Module and the bus switch. Since the SMBus is used by the Module and Carrier, care must be taken to ensure that Carrier based devices do not overlap the address space of Module based devices. Typical Module located SMBus devices and their addresses include memory SPD (serial presence detect 1010 000x, 1010 001x), programmable clock synthesizes (1101 001x), clock buffers (1101 110x), thermal sensors (1001 000x), and management controllers (vendor defined address). Contact Advantech for information on the SMBus addresses used.

# 2.13.1 SMB Signal Definitions

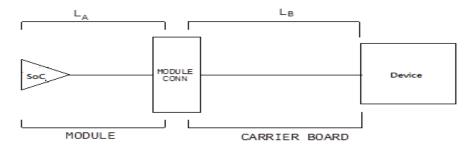
Table 37: SMB Signal Definitions

| Signal     | Pin# | Description                                | I/O    | Pwr Rail | Note |
|------------|------|--------------------------------------------|--------|----------|------|
| SMB_CK     | B13  | System Management Bus bidirectional clock  | I/O OD | 3.3V     |      |
|            |      | line                                       | CMOS   | Suspend  |      |
|            |      | Carrier Board:                             |        | / 3.3V   |      |
|            |      | 3.3VSB SMBus device - Connect to           |        |          |      |
|            |      | SMBCLK of SMBus device.                    |        |          |      |
|            |      | 3.3V SMBus device - Connect 3.3V isolation |        |          |      |
|            |      | circuit controlled by COME pin B24 PWR_OK  |        |          |      |
|            |      | to SMBCLK of SMBus device.                 |        |          |      |
|            |      | 5VSB SMBus device - Connect 5V Level       |        |          |      |
|            |      | Shifter to SMBCLK of SMBus device.         |        |          |      |
|            |      | 5V SMBus device - Connect 5V isolation     |        |          |      |
|            |      | circuit controlled by COME pin B24 PWR_OK  |        |          |      |
|            |      | to SMBCLK of SMBus device                  |        |          |      |
|            |      | N/C if not used.                           |        |          |      |
| SMB_DAT    | B14  | System Management bidirectional data line. | I/O OD | 3.3V     |      |
|            |      | Carrier Board:                             | CMOS   | Suspend  |      |
|            |      | 3.3VSB SMBus device - Connect to           |        | / 3.3V   |      |
|            |      | SMBDAT of SMBus device.                    |        |          |      |
|            |      | 3.3V SMBus device - Connect 3.3V isolation |        |          |      |
|            |      | circuit controlled by COME pin B24 PWR_OK  |        |          |      |
|            |      | to SMBDAT of SMBus device.                 |        |          |      |
|            |      | 5VSB SMBus device - Connect 5V Level       |        |          |      |
|            |      | Shifter to SMBDAT of SMBus device.         |        |          |      |
|            |      | 5V SMBus device - Connect 5V isolation     |        |          |      |
|            |      | circuit controlled by COME pin B24 PWR_OK  |        |          |      |
|            |      | to SMBDAT of SMBus device                  |        |          |      |
|            |      | N/C if not used.                           |        |          |      |
| SMB_ALERT# | B15  | System Management Bus Alert                | 1      | 3.3V     |      |
|            |      | Carrier Board:                             | CMOS   | Suspend  |      |
|            |      | Connect to SMBALERT# of SMBus device.      |        | / 3.3V   |      |
|            |      | N/C if not used.                           |        |          |      |

Note:



### 2.13.2 SMB Routing Guidelines


The SMBus should be connected to all or none of the PCIe devices and slots. A general recommendation is to not connect these devices to the SMBus.

The maximum load of SMBus lines is limited to 3 external devices. Please contact Advantech if more devices are required.

Contact Advantech for a list of SMBus addresses used on the Module. Do not use the same address for Carrier located devices.

## 2.13.3 SMB Trace Length Guidelines

Figure 32: Topology for SMB



#### Table 38: SMB Trace Length Guidelines

| Parameter                      | Main Route Guidelines                    | Notes |
|--------------------------------|------------------------------------------|-------|
| Signal Group                   | SMB                                      |       |
| Single End                     | 50Ω ±15%                                 |       |
| Nominal Trace Space within SPI | Min. 10mils                              |       |
| Signal Group                   |                                          |       |
| Spacing to Other Signal Group  | Min. 10mils                              |       |
| LA                             | Please see the SOM-5992 Layout Checklist |       |
| LB                             | Carrier Board Length                     |       |
| Max length of LA+LB            | 24"                                      |       |
| Length Mismatch                | NA                                       |       |
| Via Usage                      | Try to minimize number of vias           |       |

Notes:

## 2.14. General Purpose Serial Interface

Two TTL compatible two wire asynchronous serial ports are available on Module Types 7. This feature is introduced in COM.0 Revision 2 and uses pins on the A-B connector that have been re-claimed from the A-B VCC\_12V pool.

Any of the Module asynchronous serial ports, if implemented on an Intel X86 architecture Module platform, *should* be I/O mapped serial ports that are register compatible with the National Semiconductor 16550 UARTs that were used in the PC AT architecture. The Module asynchronous serial ports are intended for general purpose use and for use with debugging software that make use of the "console redirect" features available in many operating systems. The Module asynchronous serial ports *should not* be implemented as USB peripherals, as such implementations are generally not useful for low level debug purposes.

## 2.14.1 Serial interface Signal Definitions

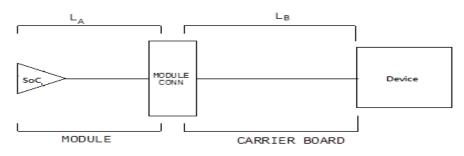
| Signal  | Pin# | Description                                                            | I/O  | Note |
|---------|------|------------------------------------------------------------------------|------|------|
| SER0_TX | A98  | Transmit Line for Serial Port 0                                        | 0    |      |
|         |      | Carrier Board:                                                         | CMOS |      |
|         |      | connect to                                                             |      |      |
|         |      | Device - TXD                                                           |      |      |
|         |      | COM DB-9 port - TxIN of Serial Transceiver and TxOUT to DB-9 pin 3 TXD |      |      |
|         |      | N/C if not used.                                                       |      |      |
| SER0_RX | A99  | Receive Line for Serial Port 0                                         | I    |      |
|         |      | Carrier Board:                                                         | CMOS |      |
|         |      | Connect to                                                             |      |      |
|         |      | Device - RXD                                                           |      |      |
|         |      | COM DB-9 port - TxOUT of Serial Transceiver and TxIN to DB-9 pin 2 RXD |      |      |
|         |      | N/C if not used                                                        |      |      |
| SER1_TX | A101 | Transmit Line for Serial Port 1                                        | 0    |      |
| /       |      | Carrier Board:                                                         | CMOS |      |
| CAN_TX  |      | connect to                                                             |      |      |
| •···_·· |      | Device - TXD                                                           |      |      |
|         |      | COM DB-9 port - TxIN of Serial Transceiver and TxOUT to DB-9 pin 3 TXD |      |      |
|         |      | N/C if not used.                                                       |      |      |
| SER1_RX | A102 | Receive Line for Serial Port 1                                         | I    |      |
| /       |      | Carrier Board:                                                         | CMOS |      |
| CAN_RX  |      | Connect to                                                             |      |      |
|         |      | Device - RXD                                                           |      |      |
|         |      | COM DB-9 port - TxOUT of Serial Transceiver and TxIN to DB-9 pin 2 RXD |      |      |
|         |      | N/C if not used                                                        |      |      |

Table 39: Serial interface Signal Definitions

Т

Note:

г




#### 2.14.2 Serial interface Routing Guidelines

NA

### 2.14.3 Serial interface Trace Length Guidelines

Figure 33: Topology for Serial interface



#### Table 40: Serial interface Trace Length Guidelines

| Parameter                      | Main Route Guidelines                    | Notes |
|--------------------------------|------------------------------------------|-------|
| Signal Group                   | Serial interface                         |       |
| Single End                     | 50Ω ±15%                                 |       |
| Nominal Trace Space within SPI | Min. 10mils                              |       |
| Signal Group                   |                                          |       |
| Spacing to Other Signal Group  | Min. 15mils                              |       |
| LA                             | Please see the SOM-5992 Layout Checklist |       |
| LB                             | Carrier Board Length                     |       |
| Max length of LA+LB            | NA                                       |       |
| Length Mismatch                | NA                                       |       |
| Via Usage                      | Try to minimize number of vias           |       |

Notes:

### 2.15 CAN Interface \*SOM-5992 is not support CAN Interface.

#### CAN Bus Operation Over SER1 Lines

The SER1\_TX and SER1\_RX asynchronous serial port lines defined for COM.0 Types 7 *may* be used alternatively to carry CMOS 3.3V logic level CAN (Controller Area Network) bus signals from a COM Express Module based CAN protocol controller. The CAN bus is an asynchronous, message based protocol widely used in the automotive and industrial control sectors. It is defined by ISO 11519, ISO 11898, and SAEJ2411. Data rates on a CAN bus *may* be as high as 1 MBit/s, although lower rates in the range from 10 kBit/s to 125 kBit/s are more common.

Use of the CAN bus in a COM Express system requires a CAN bus transceiver on the Carrier Board to interface to the CAN physical layer. CAN bus transceivers are available from NXP, Texas Instruments, Linear Technology, and others.

Data from the COM Express Module based CAN controller to the Carrier Board CAN transceiver is carried on Module line SER1\_TX. Data from the Carrier Board CAN transceiver to the COM Express Module based CAN controller is carried on Module line SER1\_RX. The Carrier Board CAN transceiver converts the logic level CAN protocol TX and RX signals from the Module into a differential half duplex line per the CAN specification.

How the SER1 asynchronous lines are shared with CAN bus operation is Advantech specific. Advantech *may* choose to use the SER1 TX and RX lines to support asynchronous serial port operation, or CAN bus operation, or both, or neither. Module build option(s) or software controlled muxing implementations

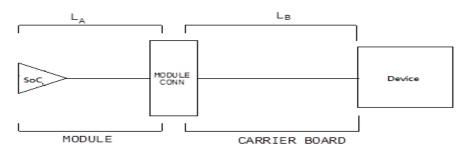
may be used. Please contact Advantech for information on the CAN Bus used.

#### 2.15.1 CAN interface Signal Definitions

| Signal    | Pin# | Description                                   | I/O    | Note |
|-----------|------|-----------------------------------------------|--------|------|
| CAN_TX    | A101 | Transmit Line for CAN                         | O CMOS | 1    |
| / SER1_TX |      | Carrier Board:                                |        |      |
|           |      | Check your CAN transceiver application notes. |        |      |
| CAN_RX    | A102 | Receive Line for CAN                          | I CMOS | 1    |
| SER1_RX   |      | Carrier Board:                                |        |      |
|           |      | Check your CAN transceiver application notes. |        |      |

Table 41: CAN interface Signal Definitions

Note:


1. SOM-5992 is not support CAN Interface.



It should be routed as a differential pair signal with 120 Ohm differential impedance. The end points of CAN bus should be terminated with 120 Ohms or with 60 Ohms from the CAN\_H line and 60 Ohms from the CAN\_L line to the CAN Bus reference voltage. Check your CAN transceiver application notes for further details on termination.

#### 2.15.3 CAN interface Trace Length Guidelines

Figure 34: Topology for CAN interface



#### Table 42: CAN interface Trace Length Guidelines

| Parameter                      | Main Route Guidelines                 | Notes |
|--------------------------------|---------------------------------------|-------|
| Signal Group                   | CAN interface                         | 1     |
| Single End                     | NA                                    |       |
| Nominal Trace Space within SPI | Min. 10mils                           |       |
| Signal Group                   |                                       |       |
| Spacing to Other Signal Group  | Min. 15mils                           |       |
| LA                             | SOM-5992 is not support CAN Interface |       |
| LB                             | Carrier Board Length                  |       |
| Max length of LA+LB            | NA                                    |       |
| Length Mismatch                | NA                                    |       |
| Via Usage                      | Try to minimize number of vias        |       |

Notes:

1. SOM-5992 is not support CAN Interface

# 2.16 Miscellaneous Signals

### 2.16.1 Miscellaneous Signals

| Signal  | Pin# | Description                                    | I/O  | Note           |
|---------|------|------------------------------------------------|------|----------------|
| TYPE0#  | C54  | The Type pins indicate the COM Express         | O 5V | Only Available |
| TYPE1#  | C57  | pin-out type of the Module. To indicate the    | PDS  | on T2-T6       |
| TYPE2#  | D57  | Module's pin-out type, the pins are either not |      | 1. TYPE0# is   |
|         |      | connected or strapped to ground on the         |      | GND pin.       |
|         |      | Module.                                        |      | 2. TYPE1 is    |
|         |      | The Carrier Board has to implement additional  |      | NC pin.        |
|         |      | logic, which prevents the system to switch     |      | 3. TYPE2# is   |
|         |      | power on, if a Module with an incompatible     |      | GND pin.       |
|         |      | pin-out type is detected.                      |      |                |
| TYPE10# | A97  | Indicates to the Carrier Board that a Type 10  |      | 1. TYPE10 is   |
|         |      | Module is installed. Indicates to the Carrier  |      | NC pin.        |
|         |      | Board, that a Rev 2/Rev 3 Module is installed. |      |                |
|         |      | TYPE10#                                        |      |                |
|         |      | NC Pin-out R3.x                                |      |                |
|         |      | PD Pin-out Type 10 pull down to ground with    |      |                |
|         |      | 47k                                            |      |                |
| SPKR    | B32  | Output used to control an external FET or a    | 0    |                |
|         |      | logic gate to drive an external PC speaker.    | 3.3V |                |
|         |      | Carrier Board:                                 | CMOS |                |
|         |      | Connect to Speaker circuit.                    |      |                |
|         |      | N/C if not used                                |      |                |
| WDT     | B27  | Output indicating that a watchdog time-out     | 0    |                |
|         |      | event has occurred.                            | 3.3V |                |
|         |      | Carrier Board:                                 | CMOS |                |
|         |      | Connect to Watchdog trigger input.             |      |                |
|         |      | N/C if not used                                |      |                |

| Signal     | Pin# | Description                                      | I/O    | Note |
|------------|------|--------------------------------------------------|--------|------|
| LID#       | A103 | LID switch.                                      | 1 3.3V |      |
|            |      | Low active signal used by the ACPI operating     | CMOS   |      |
|            |      | system for a LID switch.                         | OD     |      |
|            |      | Carrier Board:                                   |        |      |
|            |      | R2/R3 Module only - Connect to LID button.       |        |      |
|            |      | N/C if not used.                                 |        |      |
| SLEEP#     | B103 | Sleep button.                                    | 1 3.3V |      |
|            |      | Low active signal used by the ACPI operating     | CMOS   |      |
|            |      | system to bring the system to sleep state or to  | OD     |      |
|            |      | wake it up again.                                |        |      |
|            |      | Carrier Board:                                   |        |      |
|            |      | R2/R3 Module only - Connect to Sleep button.     |        |      |
|            |      | N/C if not used                                  |        |      |
| FAN_PWMOUT | B101 | Fan speed control. Uses the Pulse Width          | O 3.3V |      |
|            |      | Modulation (PWM) technique to control the fan's  | CMOS   |      |
|            |      | RPM.                                             | OD     |      |
|            |      | Carrier Board:                                   |        |      |
|            |      | R2/R3 Module only - PD 4.7K $\Omega$ to GND and  |        |      |
|            |      | connects to FAN connector pin 2 PWMOUT via       |        |      |
|            |      | Smart FAN circuit                                |        |      |
|            |      | N/C if not used                                  |        |      |
| FAN_TACHIN | B102 | Fan tachometer input for a fan with a two pulse  | I 3.3V |      |
|            |      | output.                                          | CMOS   |      |
|            |      | Carrier Board:                                   | OD     |      |
|            |      | R2/R3 Module only - Connect to FAN connector     |        |      |
|            |      | pin 3 TACHIN via Smart FAN circuit               |        |      |
|            |      | N/C if not used                                  |        |      |
| TPM_PP     | A96  | Trusted Platform Module (TPM) Physical           | I 3.3V |      |
|            |      | Presence pin.                                    | CMOS   |      |
|            |      | Active high. TPM chip has an internal pull down. |        |      |
|            |      | This signal is used to indicate Physical         |        |      |
|            |      | Presence to the TPM.                             |        |      |
|            |      | Carrier Board:                                   |        |      |
|            |      | Physical Absence - N/C                           |        |      |
|            |      | Physical Presence - PU 1K $\Omega$ to 3.3V       |        |      |
|            |      | N/C if not used                                  |        |      |

| Signal           | Pin# | Description                                          | I/O    | Note |
|------------------|------|------------------------------------------------------|--------|------|
| GPO0 / SDIO_CLK  | A93  | General Purpose Outputs for system specific usage.   | O 3.3V | 1    |
| GPO1 / SDIO_CMD  | B54  | Carrier Board:                                       | CMOS   |      |
| GPO2 / SDIO_WP   | B57  | Connect to GPO[30]                                   |        |      |
| GPO3 / SDIO_CD#  | B63  | N/C if not used                                      |        |      |
| GPI0 / SDIO_DATO | A54  | General Purpose Input for system specific usage.     | 1 3.3V | 1    |
| GPI1 / SDIO_DAT1 | A63  | The                                                  | CMOS   |      |
| GPI2 / SDIO_DAT2 | A67  | signals are pulled up by the Module.                 |        |      |
| GPI3 / SDIO_DAT3 | A85  | Carrier Board:                                       |        |      |
|                  |      | Connect to GPI[30]                                   |        |      |
|                  |      | N/C if not used                                      |        |      |
| VCC_RTC          | A47  | Real-time clock circuit power input. Nominally +3.0V |        |      |

Note:

1. SOM-5992 doesn't support SDIO.



#### Table 44: Signal Definition SDIO

| Signal           | Pin# | Description                                           | I/O      | Notes |
|------------------|------|-------------------------------------------------------|----------|-------|
| SDIO_CD#         | B63  | SDIO Card Detect. This signal indicates when a        | I 3.3V   | 4     |
| / GPO3           |      | SDIO/MMC card is present.                             | CMOS     | 1     |
|                  |      | Carrier Board:                                        |          |       |
|                  |      | Connect to CD# of SDIO/MMC device or card             |          |       |
|                  |      | N/C if not used                                       |          |       |
| SDIO_CLK         | A93  | SDIO Clock. With each cycle of this signal a one-bit  | O 3.3V   | 4     |
| / GPO0           |      | transfer on the command and each data line occurs.    | CMOS     | 1     |
|                  |      | This signal has maximum frequency of 48 MHz           |          |       |
|                  |      | Carrier Board:                                        |          |       |
|                  |      | Connect to CLK of SDIO/MMC device or card             |          |       |
|                  |      | N/C if not used                                       |          |       |
| SDIO_CMD         | B54  | SDIO Command/Response. This signal is used for        | O 3.3V   | 4     |
| / GPO1           |      | card initialization and for command transfers. During | CMOS     | 1     |
|                  |      | initialization mode this signal is open drain. During |          |       |
|                  |      | command transfer this signal is in push-pull mode.    |          |       |
|                  |      | Carrier Board:                                        |          |       |
|                  |      | Connect to CMD of SDIO/MMC device or card             |          |       |
|                  |      | N/C if not used                                       |          |       |
| SDIO_WP          | B57  | SDIO Write Protect. This signal denotes the state of  | I 3.3V   | 1     |
| / GPO2           |      | the write-protect tab on SD cards.                    | CMOS     | 1     |
|                  |      | Carrier Board:                                        |          |       |
|                  |      | Connect to WP of SDIO/MMC device or card              |          |       |
|                  |      | N/C if not used                                       |          |       |
|                  |      |                                                       |          |       |
| SDIO_DAT0 / GPI0 | A54  | SDIO Data lines. These signals operate in push-pull   | I/O 3.3V | 1     |
| SDIO_DAT1 / GPI1 | A63  | mode.                                                 | CMOS     |       |
| SDIO_DAT1 / GPI2 | A67  | Carrier Board:                                        |          |       |
| SDIO_DAT1 / GPI3 | A85  | Connect to DATA0-3 of SDIO/MMC device or card         |          |       |
|                  |      | N/C if not used                                       |          |       |

Note:

1. SOM-5992 doesn't support SDIO.



#### 2.16.2 Power Management Signals

Signals PWR\_OK, SYS\_RESET#, and CB\_RESET# *shall* be supported for all Module pinout types. Additionally, signal PWR\_OK indicates that all the power supplies to the Module are stable within specified ranges and can be used to enable Module internal power supplies.

PWR\_OK has been traditionally used to hold off a Module startup to allow devices on the Carrier such as FPGAs to initialize. The Module will typically not power up until the PWR\_OK signal goes active. There is the potential for the Carrier to back drive voltages from the Carrier to the Module when the Carrier is powered but the Module is not.

The use of SYS\_RESET# to hold off a Module startup may not produce the desired results since the behavior of SYS\_RESET# is Module chipset dependent. In typical designs, the reset initiation happens on the falling edge of SYS\_RESET# therefore holding the SYS\_RESET# low will not result in preventing the Module for starting. PWR\_OK **should not** be deactivated after the Module enters S0 unless there is a power fail condition.

Signals SUS\_S3#, SUS\_S4# and SUS\_S5# define the signaling to indicate that the Module has entered the ACPI power-saving mode S3 (Suspend-To-RAM or STR), S4 (Suspend-To- Disk or STD), or S5 (Soft-Off).

| Signal     | Pin# | Description                                               | I/O     | Note |
|------------|------|-----------------------------------------------------------|---------|------|
| PWRBTN#    | B12  | Power button low active signal used to wake up the        | I 3.3V  |      |
|            |      | system from S5 state (soft off). This signal is triggered | Suspend |      |
|            |      | on the falling edge.                                      | CMOS    |      |
|            |      | Carrier Board:                                            |         |      |
|            |      | ATX - Connect to Power Button or SIO Power Button         |         |      |
|            |      | output pin (Active low)                                   |         |      |
|            |      | AT - N/C                                                  |         |      |
|            |      | N/C if not used                                           |         |      |
| SYS_RESET# | B49  | Reset button input. Active low request for Module to      | I 3.3V  |      |
|            |      | reset and reboot. May be falling edge sensitive. For      | Suspend |      |
|            |      | situations when SYS_RESET# is not able to reestablish     | CMOS    |      |
|            |      | control of the system, PWR_OK or a power cycle may        |         |      |
|            |      | be used.                                                  |         |      |
|            |      | Carrier Board:                                            |         |      |
|            |      | Connect to Reset button                                   |         |      |
|            |      | N/C if not used                                           |         |      |
| CB_RESET#  | B50  | Reset output signal from Module to Carrier Board.         | O 3.3V  |      |
|            |      | This signal may be driven low by the Module to reset      | Suspend |      |
|            |      | external components located on the Carrier Board.         | CMOS    |      |
|            |      | Carrier Board:                                            |         |      |
|            |      | Connect to reset pin of devices except PCIe slots or      |         |      |
|            |      | devices.                                                  |         |      |
|            |      | N/C if not used.                                          |         |      |

Table 45: Power Management Signal Definitions

| Signal       | Pin# | Description                                                 | I/O     | Note |
|--------------|------|-------------------------------------------------------------|---------|------|
| PWR_OK       | B24  | Power OK from main power supply. A high value indicates     | I 3.3V  |      |
|              |      | that the power is good. This signal can be used to hold off | CMOS    |      |
|              |      | Module startup to allow Carrier based FPGAs or other        |         |      |
|              |      | configurable devices time to be programmed.                 |         |      |
|              |      | Carrier Board:                                              |         |      |
|              |      | Connect to power good pin of main power supply ATX -        |         |      |
|              |      | PW-OK pin 8 of ATX power connector connects 3.3V level      |         |      |
|              |      | shifter to COME PWR_OK.                                     |         |      |
|              |      | AT - PG pin P8.1 of AT power connector connects 3.3V        |         |      |
|              |      | level shifter to COME PWR_OK.                               |         |      |
|              |      | Other - PWROK of 12V power generator circuit connects       |         |      |
|              |      | 3.3V level shifter to COME PWR_OK.                          |         |      |
|              |      | N/C is not allowed, if the system is ATX mode.              |         |      |
|              |      | N/C if not used.                                            |         |      |
| SUS_STAT#    | B18  | Indicates imminent suspend operation; used to notify        | O 3.3V  |      |
| /ESPI_RESET# |      | LPC devices. Not used in eSPI implementations.              | Suspend |      |
|              |      | Carrier Board:                                              | CMOS    |      |
|              |      | Connect to LPCPD# of LPC device.                            |         |      |
|              |      | N/C if not used.                                            |         |      |
| SUS_S3#      | A15  | Indicates system is in Suspend to RAM state. Active low     | O 3.3V  |      |
|              |      | output. An inverted copy of SUS_S3# on the Carrier          | Suspend |      |
|              |      | Board <i>may</i> be used to enable the non-standby power    | CMOS    |      |
|              |      | on a typical ATX supply.                                    |         |      |
|              |      | Carrier Board:                                              |         |      |
|              |      | Connect to SLP_S3# (Suspend To RAM) of LPC device or        |         |      |
|              |      | SIO.                                                        |         |      |
|              |      | N/C if not used.                                            |         |      |
| SUS_S4#      | A18  | S4 Sleep control signal indicating that the system resides  | O 3.3V  |      |
|              |      | in S4 state (Suspend to Disk).                              | Suspend |      |
|              |      | Carrier Board:                                              | CMOS    |      |
|              |      | Connect to SLP_S4# (Suspend To Disk) of LPC device or       |         |      |
|              |      | SIO.                                                        |         |      |
|              |      | N/C if not used.                                            |         |      |
| SUS_S5#      | A24  | S5 Sleep Control signal indicating that the system resides  | O 3.3V  | 1    |
| _            |      | in S5 State (Soft Off).                                     | Suspend |      |
|              |      | Carrier Board:                                              | CMOS    |      |
|              |      | Connect to SLP_S5# (Soft Off) of LPC device or SIO.         |         |      |
|              |      | N/C if not used.                                            |         |      |

| Embed   | dec | I - IoT                                            |         |
|---------|-----|----------------------------------------------------|---------|
| WAKE0#  | B66 | PCI Express wake up event signal.                  | I 3.3V  |
|         |     | Module has integrated PU resistor to 3.3VDUAL      | Suspend |
|         |     | Device - Connect to WAKE# pin of PCIE device.      | CMOS    |
|         |     | Slot - Connect to WAKE# pin B11 of PCIE slot.      |         |
|         |     | N/C if not used.                                   |         |
| WAKE1#  | B67 | General purpose wake-up signal.                    | I 3.3V  |
|         |     | Carrier Board:                                     | Suspend |
|         |     | Connect to PME# of SIO                             | CMOS    |
|         |     | N/C if not use                                     |         |
| BATLOW# | A27 | In a type 7 system, BATLOW# can be used as a power | I 3.3V  |
|         |     | fail indication.                                   | Suspend |
|         |     | Carrier Board:                                     | CMOS    |
|         |     | Connect to BATLOW# of Smart Battery.               |         |
|         |     | N/C if not used.                                   |         |

Note:

1. Connector to SUS\_S4#.



#### 2.16.3 Rapid Shutdown \* SOM-5992 is not support.

COM Express Modules *may* support rapid shutdown. On a Module equipped with rapid shutdown, the assertion of the RAPID\_SHUTDOWN input will cause the internal power supply regulators on the Module to be disabled, and for all residual voltages on the internal power supply rails to be discharged through crowbar circuits.

Modules supporting rapid shutdown *shall* specify the power rail discharge behavior, including discharge time constants and end-of-discharge voltages. An example of such a specification is "all internal power supply rails must decay to 37% of initial value within 300uS of RAPID\_SHUTDOWN assertion, and to a voltage below 1.5V within 2mS of RAPID\_SHUTDOWN assertion."

A rapid shutdown implementation also requires supporting circuitry on the Carrier Board. Upon the assertion of RAPID\_SHUTDOWN, the 12V (main) input power to the Module *shall* be removed by Carrier board circuitry and the input power pins *shall* be externally clamped to ground though a crowbar circuit located on the Carrier Board. This clamping circuit *shall* maintain a maximum resistance of 1 ohm and *shall* be active for a minimum of 2mS following the rise of RAPID\_SHUTDOWN. The Module *shall* be designed with sufficiently low input capacitance to allow the input discharge specification to be met with a 1 ohm discharge resistance.

The Module design **should** prevent overheating or damage to any Module circuitry in the event that RAPID\_SHUTDOWN is asserted without the removal of input power. This condition could occur due to malfunction of the Carrier Board support circuitry, or if the RAPID\_SHUTDOWN signal is inadvertently asserted when the Module is installed on a Carrier Board that does not implement rapid shutdown support circuitry.

In some system implementations the power for both the Module and Carrier Board will fail shortly after the RAPID\_SHUTDOWN signal is asserted. Therefore, the driving source for the RAPID\_SHUTDOWN pin typically must charge an RC circuit on the Module that maintains crowbar assertion for several milliseconds following power failure. In order to charge this RC circuit rapidly, the RAPID\_SHUTDOWN signal *shall* be sourced from a source impedance of 50 ohms or less. The RAPID\_SHUTDOWN signal also *shall* have a rise time of <=1us and *shall* have a duration of >=20 uS. If the same

RAPID\_SHUTDOWN signal source is used to drive the Carrier Board input clamp circuitry, then any additional load from that Carrier Board circuitry needs to be considered in its design.

| Signal             | Pin# | Description                                                                                                                             | I/O                                    | Note |
|--------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------|
| RAPID_SHUTD<br>OWN | C67  | Trigger for Rapid Shutdown. Must be driven to 5V though a <=50 ohm source impedance for $\ge$ 20 µs. Carrier Board:<br>N/C if not used. | I 3.3V<br>CMOS<br>5.0V<br>Suspend/5.0V | 1    |

Table 46: Thermal Management Signal Definitions

Note:

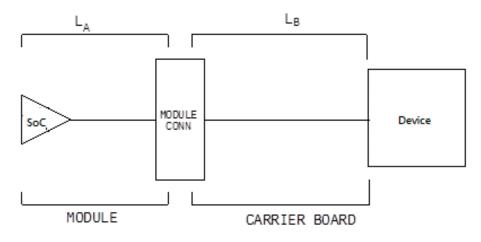
1. SOM-5992 is not support.



#### 2.16.4 Thermal Interface

| Table 47: Thermal Management Signal Definitions |
|-------------------------------------------------|
|-------------------------------------------------|

| Signal    | Pin# | Description                                            | I/O    | Note |
|-----------|------|--------------------------------------------------------|--------|------|
| THRM#     | B35  | Thermal Alarm active low signal generated by the       | I 3.3V |      |
|           |      | external hardware to indicate an over temperature      | CMOS   |      |
|           |      | situation. This signal can be used to initiate thermal |        |      |
|           |      | throttling.                                            |        |      |
|           |      | Carrier Board:                                         |        |      |
|           |      | Connect to THRM# output of Hardware Monitor.           |        |      |
|           |      | N/C if not used.                                       |        |      |
| THRMTRIP# | A35  | Thermal Trip indicates an overheating condition of the | O 3.3V |      |
|           |      | processor. If 'THRMTRIP#'goes active the system        | CMOS   |      |
|           |      | immediately transitions to the S5 State (Soft Off).    |        |      |
|           |      | Carrier Board:                                         |        |      |
|           |      | Connect to THERMTRIP# input of devices.                |        |      |
|           |      | N/C if not used.                                       |        |      |


Note:

#### 2.16.5 Miscellaneous Signals Routing Guidelines

NA

#### 2.16.6 SDIO Signals Trace Length Guidelines

Figure 35: Topology for SDIO



#### Table 48: SDIO Trace Length Guidelines

| Parameter                      | Main Route Guidelines                            | Notes |
|--------------------------------|--------------------------------------------------|-------|
| Signal Group                   | SDIO                                             | 1     |
| Single End                     | 50Ω ±10%                                         | 1     |
| DATA to CLK Maximum Pin to Pin | 500 mils                                         | 1     |
| Length Mismatch                |                                                  |       |
| Main Route segment for         | Minimum Trace Spacing Between Other SD Card and  | 1     |
| CMD/Data/CD#                   | Interface Signals                                |       |
|                                | 5 mils                                           |       |
| Main Route segment for CLK)    | Minimum Trace Spacing Between Other SD Card and  | 1     |
|                                | Interface Signals                                |       |
|                                | 15mils                                           |       |
| Spacing to Other Signal Group  | Min. 15mils                                      | 1     |
| LA                             | SOM-5992 doesn't support SDIO.                   | 1     |
| LB                             | Carrier Board Length                             | 1     |
| Max length of LA+LB            | "                                                | 1     |
| Length matching                | Data/CMD to Clock must be matched within 200mils | 1     |
| Reference Plane                | Continuous ground only                           | 1     |
| Via Usage                      | Max 2 vias                                       | 1     |

Notes:

1. SOM-5992 don't support SDIO.

### 2.17 Reserved Pins.

RSVD pins are reserved for future use and should be no connect. But Advantech maybe use for another function, please see the 2.17.1 description.

#### 2.17.1. Reserved Pins Definitions

#### Table 49: RSVD Definitions

| Signal | Pin# | Description   | I/O | Note |
|--------|------|---------------|-----|------|
| RSVD   | A29  | Reserved pin. |     |      |
| RSVD   | A30  | Reserved pin. |     |      |
| RSVD   | A32  | Reserved pin. |     |      |
| RSVD   | A33  | Reserved pin. |     |      |
| RSVD   | A48  | Reserved pin. |     |      |
| RSVD   | A86  | Reserved pin. |     |      |
| RSVD   | A87  | Reserved pin. |     |      |
| RSVD   | B28  | Reserved pin. |     |      |
| RSVD   | B29  | Reserved pin. |     |      |
| RSVD   | B30  | Reserved pin. |     |      |
| RSVD   | C63  | Reserved pin. |     |      |
| RSVD   | C64  | Reserved pin. |     |      |
| RSVD   | C77  | Reserved pin. |     |      |
| RSVD   | C83  | Reserved pin. |     |      |
| RSVD   | C97  | Reserved pin. |     |      |
| RSVD   | D36  | Reserved pin. |     |      |
| RSVD   | D37  | Reserved pin. |     |      |
| RSVD   | D54  | Reserved pin. |     |      |
| RSVD   | D63  | Reserved pin. |     |      |
| RSVD   | D64  | Reserved pin. |     |      |
| RSVD   | D77  | Reserved pin. |     |      |
| RSVD   | D83  | Reserved pin. |     |      |
| RSVD   | D97  | Reserved pin. |     |      |

Note:



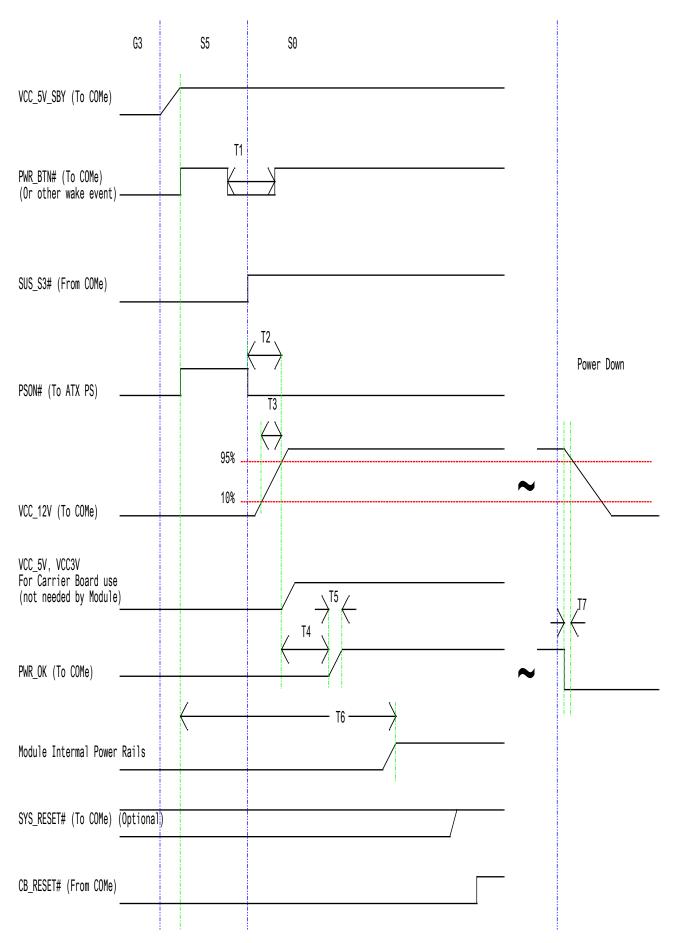
#### 3. Power

### 3.1. General Power requirements

COM Express calls for the Module to be powered by a single 12V power rail, with a +/-5% tolerance. The Basic format Modules are specified in COM.0 Rev. 3.x to support a power input range of 8.55V to 20.0V. Advantech offer a wide range input even on Compact and Basic Modules. COM Express Modules may consume significant amounts of power – 25 to 116W is common, and higher levels are allowed by the standard. Close attention must be paid by the Carrier Board designer to ensure adequate power delivery. Details are given in the sections below.

If Suspend functions such as Suspend-to-RAM, Suspend-to-disk, wake on power button press, wake on USB activity, etc. are to be supported, then a 5V Suspend power source must also be provided to the Module. If Suspend functions are not used, the Module VCC\_5V\_SBY pins should be left open. On some Modules, there may be a slight power efficiency advantage to connecting the Module VCC\_5V\_SBY rail to VCC\_5V rather than leaving the Module pin open.

Please contact Advantech for further details. Carrier Boards typically require other power rails such as 5V, 3.3V, 3.3V Suspend, etc. These may be derived on the Carrier Board from the 12V and 5V Suspend rails.


## 3.2. ATX and AT Power Sequencing Diagrams

A sequence diagram for an ATX style boot from a soft-off state (S5), initiated by a power button press, is shown in Figure 35 below.

A sequence diagram for an AT style boot from the mechanical off state (G3) is shown in Figure 36 below .

In both cases, the VCC\_12V, VCC\_5V and VCC\_3V3 power lines should rise together in a monotonic ramp with a positive slope only, and their rise time should be limited. Please refer to the ATX specification for more details.

Figure 36: ATX Style Power Up Boot – Controlled by Power Button





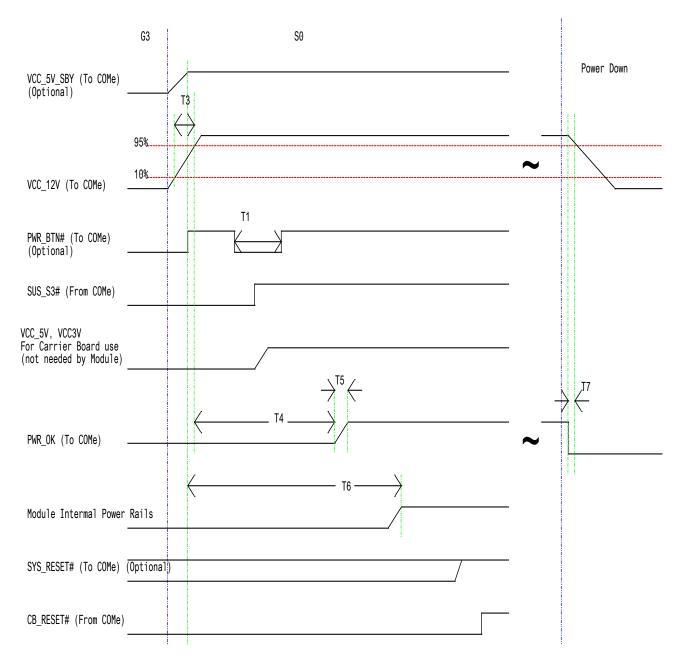



Table 50: Power Management Timings

| Sym | Description                                                             | Min   | Max   |
|-----|-------------------------------------------------------------------------|-------|-------|
| T1  | Power Button                                                            | 16ms  |       |
| T2  | The power-on time is defined as the time from when PS_ON# is pulled low |       | 500ms |
|     | to when the VCC_12V, VCC_5V and VCC_3V output.                          |       |       |
| Т3  | VCC_12V rise time from 10% to 95%                                       | 0.1ms | 20ms  |
| T4  | PWR_OK delay                                                            |       |       |
| T5  | PWR_OK rise time                                                        |       | 10ms  |
| Т6  | See Note 1                                                              |       |       |
| T7  | Power-down warning                                                      | 1ms   |       |

#### Note:

 There is a period of time (T6 in Figure 35 and Figure 36 above) during which the Carrier Board circuits have power but the COM Express Module main internal power rails are not up. This is because almost all COM Express internal rails are derived from the external VCC\_12V and there is a non-zero start-up time for the Module internal power supplies.

Carrier Board circuits should not drive any COM Express lines during the T6 interval except for those identified in the COM Express Specification as being powered from a Suspend power rail. Almost all such signals are active low. Such signals, if used, should be driven low by open drain Carrier Board circuits to assert them. Pull-ups, if present, should be high value (10K to 100K) and tied to VCC\_5V\_SBY.

The line PWR\_OK may be used during the T6 interval to hold off a COM Express Module boot. Sometimes this is done, for example, to allow a Carrier Board device such as an FPGA to be configured before the Module boots.

The deployment of Carrier Board pull-ups on COM Express signals should be kept to a minimum in order to avoid back-driving the COM Express signal pins during this interval. Carrier Board pull-ups on COM Express signal pins are generally not necessary – most signals are pulled up if necessary on the Module.

### 3.3. Design Considerations for Carrier Boards containing FPGAs/CPLDs

Very often, the Carrier Board will contain custom FPGA or other programmable devices which require the loading of program code before they are usable. The Carrier Board designer needs to take the necessary precautions to ensure that his Carrier Board logic is up and running before the Module starts. Conflicts can occur if the Module is powered on and allowed to run before devices on the Carrier Board are fully programmed and initialized. A typical example is an FPGA which includes a PCIe device. Such devices must be initialized and ready before the chipset on the Module performs link training and before the BIOS code performs enumeration of PCI devices. The Module should therefore be prevented from starting before Carrier Board devices are ready.

One method to achieve this is to delay assertion of the PWR\_OK# signal to the Module until the Carrier Board initialization process has completed. Note that during the phase when the Carrier Board is powered and the Module is not powered there is potential for back drive voltages from the carrier to the Module.

Another possibility is to use the SYS\_RESET# signal to delay Module start-up. However, depending on the Module implementation and the chipset used, SYS\_RESET# may only be a falling edge triggered signal and not a low active signal as was originally intended. In that case, asserting SYS\_RESET# may not hold the Module in the reset state. Also, PCIe link training will occur regardless of the reset signal state for some chipsets.

Please refer to the COM.0 R3.x specification (Power and System Management section) for more details and check the Module provider's documentation for their implementations of these signals.

## 4. Electrical Characteristics

## 4.1. Absolute Maximum Ratings

Table 51: Absolute Maximum Ratings

| SO    | M-5992      | MIN         | MAX         | UNIT |
|-------|-------------|-------------|-------------|------|
|       | VIN         | 8.5 (5-5%)  | 20(19+5%)   | V    |
| Power | VSB         | 4.75 (5-5%) | 5.25 (5+5%) | V    |
|       | RTC Battery | 2.0         | 3.3         | V    |

## 4.2. DC Characteristics

Table 52: DC Current Characteristics1

| Intel D-1548 @2.0GHz (PTU) |                           |             |        |        |  |
|----------------------------|---------------------------|-------------|--------|--------|--|
| Power Plane                | Maximum Power Consumption |             |        |        |  |
| Symbol                     | S0                        | S0 S3 S5 G3 |        |        |  |
| +VIN (+12V)                | 55.53W                    |             |        |        |  |
| +VIN (+8.5V)               | 52.82W                    |             |        |        |  |
| +VIN (+20V)                | 54.97W                    |             |        |        |  |
| +V5SB_CB                   | 0.045W                    | W           | 1.761W |        |  |
| RTC Battery                |                           |             | 1.48uA | 4.04uA |  |

Table 53: DC Current Characteristics2

| Intel D-1548 @2.0GHz (Burn-in) |                           |    |        |        |
|--------------------------------|---------------------------|----|--------|--------|
| Power Plane                    | Maximum Power Consumption |    |        |        |
| Symbol                         | S0                        | S3 | S5     | G3     |
| +VIN (+12V)                    | 50.26W                    |    |        |        |
| +VIN (+8.5V)                   | 49.35W                    |    |        |        |
| +VIN (+20V)                    | 51.52W                    |    |        |        |
| +V5SB_CB                       | 0.03W                     | W  | 1.761W |        |
| RTC Battery                    |                           |    | 1.48uA | 4.04uA |



## 4.3. Inrush Current

Table 54 : Inrush Current

| Power Plane  | Maximum  |          |  |
|--------------|----------|----------|--|
| Symbol       | G3 to S5 | S5 to S0 |  |
| +V5SB_CB     | 1.2708A  |          |  |
| +VIN (+12V)  |          | 2.54070A |  |
| +VIN (+8.5V) |          | 3.2156A  |  |
| +VIN (+20V)  |          | 1.7559A  |  |