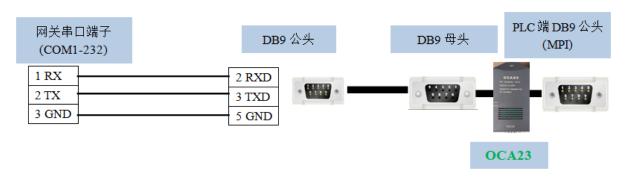


Taglink 网关和 S7-300 通过 MPI 通讯


适用设备类型

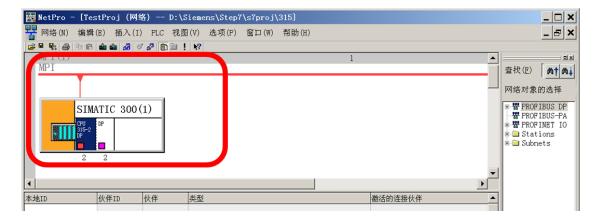
S7-300

采集设备配置

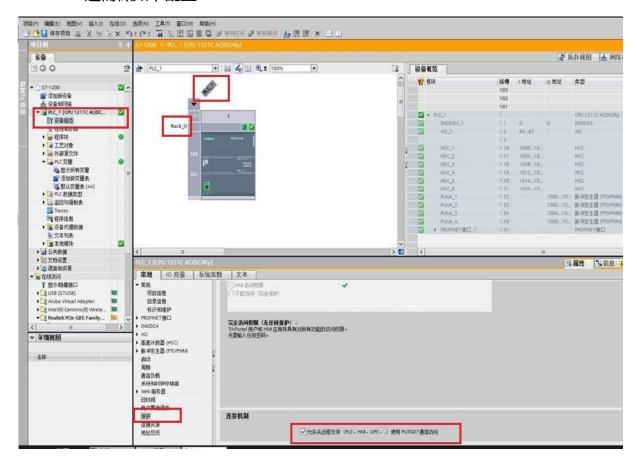
1. 该驱动基于 Siemens MPI 协议,使用 MPI 串口电缆(测试: 6ES7 972- 0CA23- 0XA0)(淘宝上可搜索 0CA23 购买该电缆),适用西门子 S7300/400 通信。用网关的 COM 口与 PLC 通信。实物和接线如下:

2. 设置 PLC 端 MPI 总线地址及波特率

ADVANTECH

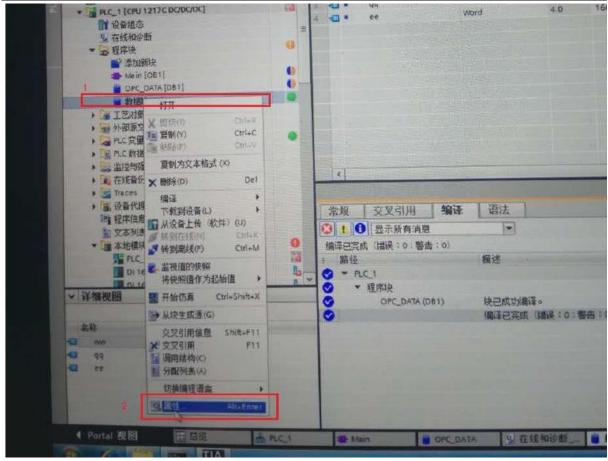

Enabling an Intelligent Planet

- a. 在 CPU 属性中添加 MPI 子网,设置波特率为 19200,地址一般默认为 2;
- b. 添加 MPI 子网后,在 NetPro 组态界面中, MPI 接口和 MPI 网络中会有红线连接; 详见下图:

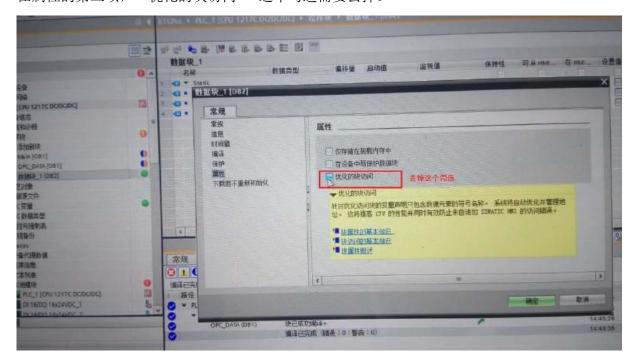


S7-1200 还需做如下配置

TSAP in Hex: Device ID, RackSlot: 可以从西门子的博图软件中看出。例如图中 PLC

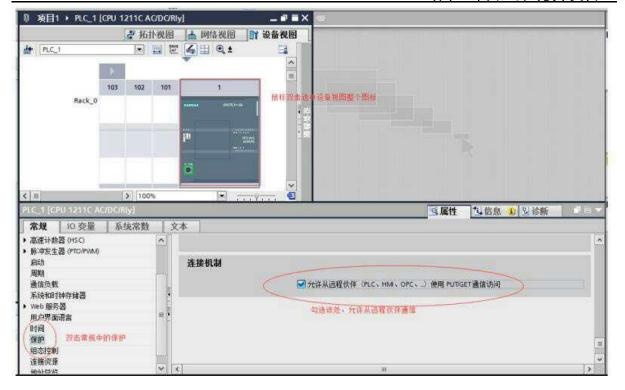

部分: PLC 1,Rack 0, 所以 TSAP in Hex:Device ID, RackSlot: 01.00

在读取数据块时,还需要进行如下操作: 如下图,在程序块中找到数据块,右击选择属性



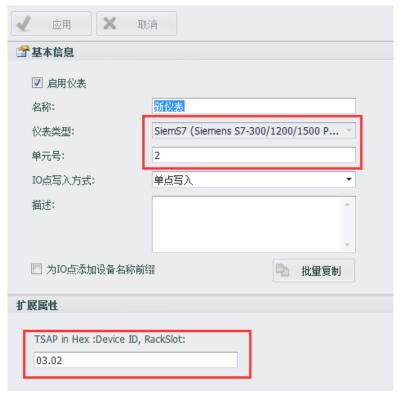
Enabling an Intelligent Planet

研华(中国)公司技术文档



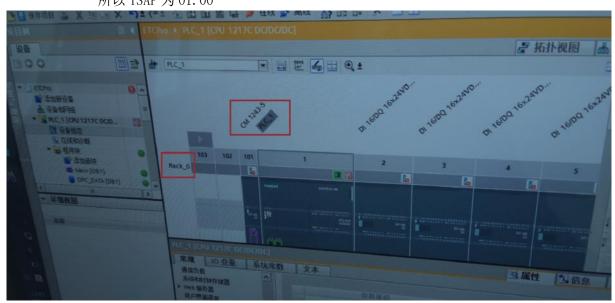
在属性的第三项, "优化的块访问"这个勾选需要去掉。

TagLink Studio 通讯配置


- 1) 确认网关的 COM 口是 RS232 口;
- 2) Taglink 中添加 COM 口,设置通讯参数(这里以 COM6 为例,波特率和 PLC 中一样为 19200,数据位 8,停止位 1,奇偶校验为奇校验,其他默认):

3) 添加新仪表,使用 SiemS7 驱动,单元号为 PLC MPI 地址号, TASP 为 03.02;

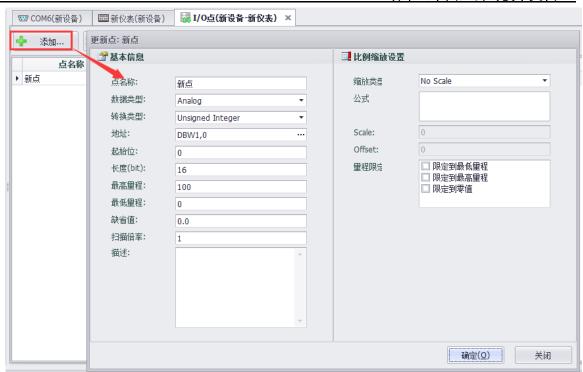
Enabling an Intelligent Planet



注:如无特殊变动,请使用此 TASP 参数。

03.02 for S7-300

03.03 for S7-400


S7-1200 和 S7-1500 的可以从博图软件看出。例如下图中 PLC 部分: PLC_1, Rack_0, 所以 TSAP 为 01.00

配置需要读取的变量地址即可:

ADVANTECH

- 5) 下载工程到网关中,通过在线监视是否通讯成功;
- 6) 模拟量 IO 点配置

参数	地址模板	描述	转换代码 (默认)	长度 (bits)	最高量程 (默认)	显示格式
DB	DB5,10	DB	Unsigned Integer	16	65535	5.0
DBB	DBB1,0	DB Byte Data		8	256	3.0
DBD	DBD1,0	DB DWord Data		32	4,294,967,296	10.0
DBW	DBW1,0	DB Word Data		16	65535	5.0
IB	IB000	Input Byte		8	256	3.0
ID	ID000	Input Dword		32	4,294,967,296	10.0
IW	IW000	Input Word		16	65535	5.0
МВ	MB001	Internal Byte		8	256	3.0
MD	MD001	Internal Word		24	1,048,576	7.0
MW	MW001	Internal Dword		16	65535	5.0
PIB	PIB000	Extend Input Byte		8	256	3.0
PID	PID000	Extend Input Dword		32	4,294,967,296	10.0
PIW	PIW000	Extend Input Word		16	65535	5.0
QB	QB000	Output Byte		8	256	3.0
QD	QD000	Output Dword		32	4,294,967,296	10.0
QW	QW000	Output Word		16	65535	5.0

模拟量点定义应用举例:

Enabling an Intelligent Planet

表 2-4 模拟量地址对照表

S7 300/400PLC 地址	对应 I0 点配置				
寄存器地址	对应地址格式	起始位	长度	转换代码	
DB28. DBW2	DBW28, 2	0	16	Unsigned Integer	
DB12. DBD86	DBD12, 86	0	32	Unsigned Integer	
DB2. DBB1	DBB2, 1	0	8	Unsigned Integer	
DB2. DBW64 取 Float 值	DBW2,64	0	32	Real	

7) 数字量 IO 点配置

参数	地址模板	描述	转换代码 (默认)	长度 (bits)	
DBX	DBX1,0	DB Bit	Unsigned Integer	1	
IX	IX000	Input		1	
MX	MX000	Internal Bit		1	
QX	QX000	Output		1	

数字量点定义应用举例:

在定义数字量点时,默认定义数字量点起始位 0,长度 1; SiemensS7 系列 PLC,在定义数字量点时,往往起始位不为 0,根据需要定义,例如: I0001.3,Q0000.4分别代表一个 DI、D0点,定义该数字量类型点时,做如下配置;

表 2-5 数字量地址对照表

S7 300/400 PLC 地址	对应 I0 点配置				
10 地址	对应地址格式	起始位	长度	转换代码	
I0001. 2	IX0001	2	1	Unsigned Integer	
10003.5	IX0003	5	1	Unsigned Integer	
Q1003. 2	QX1003	2	1	Unsigned Integer	