

Open eAutomation, Boundless Integration

Product:

PCI-1712

Abstract:

Testing the 1MHz Sampling Rate of the PCI-1712

Description:

This document provides a simple way to test the 1MHz sampling rate of PCI-1712 and information about the maximum sampling rate.

Solution:

To measure the sampling speed of the PCI-1712, a reliable instrument or signal source, like a function generator, is needed to provide a signal with fixed frequency for measurement. Using the method "DMA-BM" will be necessary to have 1MHz AI sampling.

Please follow the steps below to finish the test.

1. Find VC AD-DMA-BM example in folder:

C:\Program Files\ADVANTECH\ADSAPI\Examples\VC\AD_DMA_BM.

- 2. Use an instrument to produce 100kHz 0~5V pulse signal to AI channel 0 (pin68+, pin60-).
- 3. Set parameters in the example setting page as shown below:

Select Device	Scan Channel	Data Type	Gain Option
Select Device	Start Ch. 0	C Raw Data	Overall
Supports: PCI-1712, PCI-1714, PCI-1716	Num. 1	Voltage	C Gain List
Pacer Rate	_ Conv. #	Clock source	Input Range
1000000 Hz 1MHz	200000	🕞 🖲 Internal	
PCI-1712: From 154 To 1M	Even Number and	C External_0	Gain List
PCI-1714: From 235K To 30M	<= 8 M Samples	C External_1	
PCI-1716: From 154 To 250K			0
Trig. Mode	Trig. source	Trig edge	Single/Auto
Pacer C Post	🕫 Internel	C Rising	C Cyclic
C Delay C About	C External	C Falling	Noncyclic
	Trig. type	Event	
Delay Cnt. 2	🖸 Digital	Event waiting with 0	ms (0 = INFINITE
From 2 To 65535	C ALO C AL1	E Enable Event	
	C AL_2 C AL_3	I Chable Event	I¥ Buiter Change
PCI-1716 only support Pacer Mode.	Trig. Volt. 0.000 V	Verrun	✓ Terminate
	PCI-1712: From	✓ Interrupt with 1	* 2048 Samples
	ALCONV	(T.)	1 1 21)
	PCI-1714: Depends	(From 1 to 31)	
	on input range.	PCI-1714 doesn't support interrupt event.	

Open eAutomation, Boundless Integration

4. See the result of sampling in the Run page.

Since the sampling rate is 10X faster than the measured signal, there should be 10 data streams being sampled per period.

And you can see from the following picture, the sampling is correct with expected 10 data streams per period.

So it should be an easy way to verify if your PCI-1712 can sample with the sampling speed of 1MHz.

By just installing the example and having a function generator, it can be done.

One thing you have to notice is that the sampling rate is shared by channels. This is because there's only one AD converter for all AI channels, and a multiplex is switching each measured channel to AD converter. For instance, if the customer wants to sample 4 channels, the maximum sampling rate for each channel becomes 1M/4=250k(Hz).

Open eAutomation, Boundless Integration

The sampled data will be in the order below (if the start channel is ch. 0):

Buf [0] : ...=> ch. 0Buf [1] : ...=> ch. 1Buf [2] : ...=> ch. 2Buf [3] : ...=> ch. 3Buf [4] : ...=> ch. 0Buf [5] : ...=> ch. 1Buf [6] : ...=> ch. 2Buf [7] : ...=> ch. 3Buf [8] : ...=> ch. 0

The time interval between each buffer is still 1/1Mhz=1µs.

But for each channel, it would be $1\mu s \times 4 = 4\mu s$, resulting in 250kHz sampling rate.