User Manual # **PCI-1758 Series** 128-Channel Isolated Digital I/O Card # Copyright The documentation and the software included with this product are copyrighted 2020 by Advantech Co., Ltd. All rights are reserved. Advantech Co., Ltd. reserves the right to make improvements in the products described in this manual at any time without notice. No part of this manual may be reproduced, copied, translated, or transmitted in any form or by any means without the prior written permission of Advantech Co., Ltd. The information provided in this manual is intended to be accurate and reliable. However, Advantech Co., Ltd. assumes no responsibility for its use, nor for any infringements of the rights of third parties that may result from its use. # **Acknowledgements** Intel and Pentium are trademarks of Intel Corporation. Microsoft Windows and MS-DOS are registered trademarks of Microsoft Corp. All other product names or trademarks are properties of their respective owners. # **Product Warranty (2 years)** Advantech warrants the original purchaser that each of its products will be free from defects in materials and workmanship for two years from the date of purchase. This warranty does not apply to any products that have been repaired or altered by persons other than repair personnel authorized by Advantech, or products that have been subject to misuse, abuse, accident, or improper installation. Advantech assumes no liability under the terms of this warranty as a consequence of such events. Because of Advantech's high quality-control standards and rigorous testing, most customers never need to use our repair service. If an Advantech product is defective, it will be repaired or replaced free of charge during the warranty period. For out-of-warranty repairs, customers are billed according to the cost of replacement materials, service time, and freight. Please consult your dealer for more details. If you believe that your product is defective, follow the steps outlined below. - Collect all the information about the problem encountered. (For example, CPU speed, Advantech products used, other hardware and software used, etc.) Note anything abnormal and list any onscreen messages displayed when the problem occurs. - 2. Call your dealer and describe the problem. Please have your manual, product, and any helpful information readily available. - 3. If your product is diagnosed as defective, obtain an return merchandize authorization (RMA) number from your dealer. This allows us to process your return more quickly. - 4. Carefully pack the defective product, a completed Repair and Replacement Order Card, and a proof of purchase date (such as a photocopy of your sales receipt) into a shippable container. Products returned without a proof of purchase date are not eligible for warranty service. - 5. Write the RMA number visibly on the outside of the package, then ship the package prepaid to your dealer. Part No. 2003175803 Printed in Taiwan Edition 4 January 2021 # **Declaration of Conformity** ### CE This product has passed the CE test for environmental specifications when shielded cables are used for external wiring. We recommend the use of shielded cables. This type of cable is available from Advantech. Please contact your local supplier for ordering information. ### **FCC Class A** This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference. In such cases, users are required to correct the interference at their own expense. # **Technical Support and Assistance** - 1. Visit the Advantech web site at www.advantech.com/support to obtain the latest product information. - Contact your distributor, sales representative, or Advantech's customer service center for technical support if you need additional assistance. Please have the following information ready before calling: - Product name and serial number - Description of your peripheral attachments - Description of your software (operating system, version, application software, etc.) - A complete description of the problem - The exact wording of any error messages # **Packing List** Before setting up the system, check that the items listed below are included with your product and in good condition. If any item does not accord with the table, please contact your dealer immediately. - 1 x PCI-1758 Series DAQ card - 1 x PCI-1758 Series user manual # **Safety Precaution - Static Electricity** Follow these simple precautions to protect yourself from harm and the products from damage. - To avoid electrical shock, always disconnect the power from the PC chassis before manual handling. Do not touch any internal components, the CPU, or any adapter cards while the PC is powered on. - Disconnect the power before implementing any configuration changes. A sudden rush of power after connecting a jumper or installing a card may damage sensitive electronic components. # **Contents** | Chapter | 1 | Introduction | .1 | |----------|------------|--|------| | | 1.1 | Introduction | 2 | | | 1.2 | Features | 2 | | | 1.3 | Applications | | | | 1.4 | Installation Guide | | | | 1.5 | Software Overview | | | | 1.6 | DAQNavi Device Driver Programming Roadmap | | | | | 1.6.1 Programming Tools | | | | | 1.6.2 Programming with DAQNavi Device Drivers Function Library | | | | 1.7 | 1.6.3 Troubleshooting DAQNavi Device Driver Errors | | | Chapter | 2 | Installation | .7 | | | 2.4 | Uppositing | 0 | | | 2.1
2.2 | Unpacking Driver Installation | | | | 2.2 | Hardware Installation | | | | 2.0 | Hardware installation | 9 | | Chapter | 3 | Signal Connections | 11 | | | 3.1 | Overview | . 12 | | | 3.2 | Card Layout | | | | | Figure 3.1 PCI-1758UDIO Card Layout | | | | | Figure 3.2 PCI-1758UDI Card Layout | | | | 0.0 | Figure 3.3 PCI-1758UDO Card Layout | | | | 3.3 | Switch and Jumper Settings | | | | | 3.3.1 Board ID (SW1) | | | | | Table 3.1: Board ID Settings (SW1) | | | | | Table 3.2: Digital Output State After Hot Reset (JP1) | | | | | 3.3.3 Digital Input Type | | | | | Table 3.3: Digital Input Type | | | | 3.4 | Signal Connections | | | | | Figure 3.4 PCI-1758UDIO I/O Connector Pin Assignments | | | | | Figure 3.5 PCI-1758UDI I/O Connector Pin Assignments | | | | | Figure 3.6 PCI-1758UDO I/O Connector Pin Assignments | | | | | 3.4.1 I/O Connector Pin Definition | | | | | Table 3.4: I/O Connector Pin Definition | | | | | 3.4.2 Isolated Digital Input | | | | | Figure 3.7 Isolated Digital Input Connection | | | | | 3.4.3 Isolated Digital Output Figure 3.8 Isolated Digital Output Connection | | | | 3.5 | Field Wiring Considerations | | | Appendix | хА | Specifications | 21 | | | A.1 | Isolated Digital Input (PCI-1758UDI & PCI-1758UDIO) | 22 | | | A.2 | Isolated Digital Output (PCI-1758UDO & PCI-1758UDIO) | | | | A.3 | General | | | | A.4 | Power Consumption | | | | | | | | Appendix B | Block Diagrams | 25 | |------------|----------------|----| | B.1 | Block Diagrams | 26 | # Chapter # Introduction This chapter introduces the PCI-1758 series cards and their typical applications. - **■** Features - Applications - Installation Guide - **■** Software Overview - Device Driver Roadmap - Accessories # 1.1 Introduction Thank you for buying the Advantech PCI-1758 series, 128-channel isolated digital input/output card(s). It is a series of data acquisition card with advanced performance based on PCI bus architecture. They feature a unique circuit design and completed functions for data acquisition and control. The following sections in this chapter will provide further information about features of PCI-1758 series, including Quick Start Guide, and brief information on software and accessories. # 1.2 Features - 128-ch isolated DI/O - Wide input range (5 ~ 25 V_{DC}) - Either +/- voltage input for IDI by group - Wide output range (5 ~ 40 V_{DC}) - High sink current on isolated output channels (350 mA max./ch) - High-voltage isolation (2,500 V_{DC}) - 2,000 V_{DC} ESD protection - Output status read-out - Keeps output settings and values after system hot reset - Interrupt handling capability for IDI channels - Board ID PCI-1758 series provides the following benefits: ### **Robust Protection** The PCI-1758 series features a robust isolation protection for applications in industry, lab and machine automation. The PCI-1758 series can durably withstand a voltage up to $2,500~V_{DC}$, preventing your host system from harm. # Wide Input Range The PCI-1758 series accepts a wide range of input voltage, from 5 to 25 V_{DC} , and it is suitable for most industrial applications with 12 V_{DC} and 24 V_{DC} input voltage. We are also ready to serve your special needs for specific input voltage ranges. Do not hesitate to ask us about tailoring our standard products to meet your specifications. # Wide Output Range The PCI-1758 series also features a wide output voltage range from 5 to 40 V_{DC} , suitable for most industrial applications of 12 $V_{DC}/24\ V_{DC}$ output voltage. Similar to the input voltage offer above, we are ready to serve your special needs for specific output voltage range. Do not hesitate to ask us about tailoring our standard products to meet your specifications. # **Board ID Setting** The PCI-1758 series has a built-in DIP switch that defines each card's ID when multiple cards have been installed in the same PC chassis. The board ID setting function is very useful when users build systems with multiple PCI-1758 series cards. With correct Board ID settings, you can easily identify and access each card during hardware configuration and software programming. # **Watchdog Timer Function** The watchdog timer is a software-configurable feature used to set critical outputs to safe states in the event of a software failure. It will activate if there is a loss of communication between the application and the PCI-1758U card. If the PCI-1758U card does not receive a watchdog clear software command within the interval time specified for the watchdog timer, the outputs go to a user-defined safe state and remain in that state until the watchdog timer is disabled and new values are written by the software. After the watchdog timer expires, the PCI-1758U card ignores any writes until the watchdog timer is disabled. Users can set the watchdog timer timeout period through WDT register to specify the amount of time that must elapse before the watchdog timer expires. The counter on the watchdog timer is configurable up to (232-1) x 100 ns (approximately seven minutes) before it expires. ### **Reset Protection** When the system has undergone a hot reset (i.e., without turning off the system power), the PCI-1758 series can either retain output values of each channel, or return to its default configuration as open status, depending on its on-board jumper setting. This function protects the system from incorrect operations during unexpected system resets. All the above features make PCI-1758 series cards ideal for industrial applications. Note! For detailed specifications of the PCI-1758 series cards, please refer to Appendix A. # 1.3 Applications - Industrial ON/OFF control - Switch status sensing - BCD interfacing - Digital I/O control - Industrial and lab automation # 1.4 Installation Guide Before installing a PCI-1758 series card, ensure that you have the following necessary components: - 1 x PCI-1758 Series DAQ card - 1 x PCI-1758 Series user manual - Advantech DAQNavi driver software - 2 x PCL-101100S-1E/PCL-101100S-2E/PCL-101100S-3E cable (optional) - 2 x ADAM-39100-BE wiring board (optional) - 1 x Personal computer or workstation with a PCI bus slot Other optional components are also available for enhanced operation: Advantech DAQ tools, LabView, and other third-party software After obtaining all necessary components and accessories for enhanced operation, you can begin card installation. # 1.5 Software Overview Advantech offers a comprehensive set of DLL drivers and third-party driver support and application software to fully exploit the functions of PCI-1758 series cards. These include - DAQNavi software - LabView driver - Advantech DAQ tools # **Programming DA&C Cards** Advantech application software, such as Advantech DAQNavi software can be used for programming PCI-1758 series cards. Advanced users can conduct register-level programming, although this is not recommended due to its laborious and time-consuming nature. ### **DAQNavi Software** Advantech DAQNavi software includes device drivers and an SDK that features a complete I/O function library to enhance application performance. This software can be downloaded from the Advantech Support Portal (http://support.advantech.com/support/new_default.aspx). Simply search "DAQNavi" to navigate to the download page. The Advantech DAQNavi software for Windows 7/10 works seamlessly with a range of development tools, including Visual Studio.Net, Visual C++, Visual Basic, and Borland Delphi. # **Register-Level Programming** Register-level programming is available for experienced programmers wishing to write code directly at the device register level. Because register-level programming requires substantial time and effort, we recommend that you use the Advantech DAQNavi software instead. However, if register-level programming is unavoidable, contact the technical support team to obtain any information that may be required. # 1.6 DAQNavi Device Driver Programming Roadmap This section provides a roadmap for building an application from the ground up using Advantech DAQNavi device drivers combined with your preferred development tools, such as Visual Studio.Net, Visual C++, Visual Basic, and Borland Delphi. Additionally, step-by-step instructions for building unique applications using each development tool are included in the DAQNavi SDK manual. A comprehensive set of example source codes is also provided for reference. # 1.6.1 Programming Tools Programmers can develop application programs using their preferred development tools. For example, - Visual Studio.Net - Visual C++ and Visual Basic - Borland Delphi The DAQNavi SDK manual can be downloaded from the Advantech website. Alternatively, if the device drivers are already installed on the computer, the DAQNavi SDK manual can be accessed via the Start button. Start/Programs/Advantech Automation/DAQNavi/DAQNavi Manuals/DAQNaviSDK Manual The example source codes can be found under the corresponding installation folder/default installation path. \Advantech\DAQNavi\Examples The example source codes are located in the corresponding installation folder. The default installation path is as follows: # \Advantech\DAQNavi\Examples For information about using other function groups or other development tools, refer to the chapter titled "Using DAQNavi SDK" in the DAQNavi SDK manual or to the video tutorials provided in Advantech Navigator. # 1.6.2 Programming with DAQNavi Device Drivers Function Library Advantech DAQNavi device drivers offer a comprehensive function library that can be used for various application programs. This function library consists of numerous APIs that support many development tools, such as Visual Studio.Net, Visual C++, Visual Basic, and Borland Delphi. According to their specific functions or services, APIs can be categorized into the following function groups: - Analog Input Function Group - Analog Output Function Group - Digital Input/Output Function Group - Counter Function Group For information regarding the usage and parameters of each function, refer to "Using DAQNavi SDK" in the DAQNavi SDK manual. # 1.6.3 Troubleshooting DAQNavi Device Driver Errors Driver functions will return a status code when they are called to perform a certain task for the application. Sometimes a function is not successful and an error code is returned. To troubleshoot a device driver error, check the error code and error description in the "Error Control" section for the specific function in the DAQNavi SDK manual. # 1.7 Accessories Advantech offers a complete range of accessories to support PCI-1758 series cards. These accessories include # Wiring Cables # ■ PCL-101100S-1E, PCL-101100S-2E, PCL-101100S-3E PCL-101100S is a 100-pin mini-SCSI shielded cable especially designed for PCI-1758 series cards. This cable should be used with an ADAM-39100 wiring board. # Wiring Boards ### ■ ADAM-39100-BE ADAM-39100 is a 100-pin SCSI wiring terminal module with DIN-rail mount. # Chapter 2 # Installation This chapter details the packing list, unpacking instructions, and driver and card installation procedures. - **■** Unpacking - **■** Driver Installation - Hardware Installation # 2.1 Unpacking Upon receiving your PCI-1758 series product, check that the package contains the following items: - 1 x PCI-1758 series DAQ card - 1 x PCI-1758 series Startup manual PCI-1758 series cards feature certain electronic components that are vulnerable to electrostatic discharge (ESD). ESD can easily damage the integrated circuits and components if preventive measures are ignored. Before removing the card from the anti-static plastic bag, take the following precautions to avoid potential damage from ESD: - Touch the metal part of the computer chassis with your hand to discharge any static electricity accumulated in your body. Alternatively, wear a grounding strap. - Touch the anti-static bag to a metal part of the computer chassis before opening the bag. - Hold of the DAQ card by the metal bracket only when removing it from the bag. # After taking out the card - Inspect the card for any signs of external damage (loose or damaged components, etc.). If the card is visibly damaged, notify the Advantech service department or your local sales representative immediately. - Do not attempt to install a damaged card in your system. Additionally, pay extra attention to the following during installation: - Avoid physical contact with materials that may hold static electricity, such as plastic, vinyl, and styrofoam. - When handling the card, hold it by its edges only. Do not touch the exposed metal connector pins or any electronic components on the card. ### Note! Retain the anti-static bag for future use. The original bag may be needed to store the card when removing or installing the card on another PC. # 2.2 Driver Installation Driver installation should be completed before the PCI-1758 series card is installed in the system to ensure problem-free installation. The Advantech DAQNavi drivers for PCI-1758 series cards can be downloaded from the Advantech Support Portal at http://support.advantech.com/support/new_default.aspx Simply search "PCI-1758" to navigate to the product page with relevant download links. # 2.3 Hardware Installation # Note! Ensure that all relevant drivers are installed before installing the card (please refer to Chapter 2.2 Driver Installation). After the device drivers are installed, the PCI-1758 series card can be installed in any slot on the computer. However, we recommend that you refer to the computer's user manual or related documentation for guidance. Follow the steps provided below to install the card in your computer. - 1. Power off the computer and unplug the power cord and cables before installing or removing any components. - 2. Remove the cover of the computer. - 3. Remove the slot cover on the back panel of the computer. - 4. Touch a metal surface of the computer to neutralize any static electricity that may be in your body. - 5. Insert the PCI-1758 series card into a PCI slot. Hold the card by its edges only and carefully align it with the slot. Push the card firmly to insert the card in the slot. Do not use excessive force to avoid damaging the card. - 6. Fasten the bracket of the PCI card onto the back panel rail of the computer using screws. - 7. Connect any additional accessories (100-pin cable, wiring terminals, etc. if necessary) to the PCI-1758 series card. - 8. Replace the cover of the computer chassis. Reconnect the cables removed in Step 2. - 9. Plug in the power cord and turn on the computer. After the PCI-1758 series card is successfully installed, users can begin configuring their device using the Advantech Navigator program automatically installed during driver setup. # Chapter # **Signal Connections** This chapter explains how to connect input and output signals to PCI-1758 series cards via the I/O connector. - **■** Overview - Card Layout - Switch and Jumper Settings - **■** Signal Connections - Field Wiring Considerations # 3.1 Overview Maintaining signal connections is one of the most important factors in ensuring that your application system is sending and receiving data correctly. A good signal connection can avoid unnecessary and costly damage to your PC and other hardware devices. This chapter provides useful information about how to connect input and output signals to PCI-1758 series cards via the I/O connector. # 3.2 Card Layout Figures 3.1 to 3.3 show the connector, jumper, and switch locations on PCI-1758 series cards. Figure 3.1 PCI-1758UDIO Card Layout Figure 3.2 PCI-1758UDI Card Layout Figure 3.3 PCI-1758UDO Card Layout # 3.3 Switch and Jumper Settings # 3.3.1 Board ID (SW1) PCI-1758 series cards feature a built-in DIP switch (SW1) that is used to define each card's board ID. When multiple cards are installed on the same chassis, the board ID switch is useful for identifying each card's device number. After installing each card, users can differentiate them using their board ID. The available IDs and their corresponding switch combinations are listed in Table 3.1. Refer to this table when changing the ID to a non-zero number. | Table 3.1: Board ID Settings (SW1) | | | | | |------------------------------------|---------|---------|---------|---------| | Board ID (dec) Switch Position | | | | | | | 1 (ID3) | 2 (ID2) | 3 (ID1) | 4 (ID0) | | 0 | ON | ON | ON | ON | | 1 | ON | ON | ON | OFF | | 2 | ON | ON | OFF | ON | | 3 | ON | ON | OFF | OFF | | 4 | ON | OFF | ON | ON | | 5 | ON | OFF | ON | OFF | | 6 | ON | OFF | OFF | ON | | 7 | ON | OFF | OFF | OFF | | 8 | OFF | ON | ON | ON | | 9 | OFF | ON | ON | OFF | | 10 | OFF | ON | OFF | ON | | 11 | OFF | ON | OFF | OFF | | 12 | OFF | OFF | ON | ON | | 13 | OFF | OFF | ON | OFF | | 14 | OFF | OFF | OFF | ON | | Table 3.1: Board ID Settings (SW1) | | | | | | |------------------------------------|-----|-----|-----|-----|--| | 15 | OFF | OFF | OFF | OFF | | Default setting = 0 # 3.3.2 Digital Output State After Hot Reset (JP1) The default status of the PCI-1758 series cards' digital output after a system power on is OPEN to protect external devices from damage. JP1 determines whether the last output value is retained after a hot system reset. Table 3.2 shows the jumper positions for power on configuration. | Table 3.2: Digital Output State After Hot Reset (JP1) | | | | |-------------------------------------------------------|--------------------------------------|--|--| | JP1 | Digital Output State After Hot Reset | | | | D 000 | Reset to default (power-on) value | | | | 000 | Keep last status | | | # 3.3.3 Digital Input Type This jumper is for PCI-1758UDI and PCI-1758UDIO to set digital input type. The type can be wet contact or dry contact. Table 3.3 shows the jumper positions for digital input type. # Table 3.3: Digital Input Type JP3: Digital input channel 0 ~ 15 JP4: Digital input channel 16 ~ 31 JP5: Digital input channel 32 ~ 47 JP6: Digital input channel 48 ~ 63 JP7: Digital input channel 64 ~ 79 (PCI-1758UDI only) JP8: Digital input channel 80 ~ 95 (PCI-1758UDI only) JP9: Digital input channel 96 ~ 111 (PCI-1758UDI only) JP10: Digital input channel 112 ~ 127 (PCI-1758UDI only) Wet contact # 3.4 Signal Connections # **Pin Assignments** The PCI-1758 series cards feature two 100-pin connectors that allow users to integrate accessories using a PCL-101100S shielded cable. Figure 3.4 to 3.6 show the pin assignments of the I/O connectors on the PCI-1758 series cards. The I/O connector signal descriptions are presented in Table 3.3. | | | ı | ı | | | |--------------|--------|------------|--------------|----------------|--------------| | PCOM3 | 100 50 | PCOM1 | GND | 1 51 | GND | | PCOM3 | 99 49 | PCOM1 | GND | 2 52 | GND | | DO63 | 98 48 | DO31 | GND | 3 53 | GND | | DO62 | 97 47 | DO30 | GND | 4 54 | GND | | DO61 | 96 46 | DO29 | GND | 5 55 | GND | | DO60 | 95 45 | DO28 | GND | 6 56 | GND | | DO59 | 94 44 | DO27 | DIO | 7 57 | DI32 | | DO58 | 93 43 | DO26 | DI1 | 8 58 | DI33 | | DO57 | 92 42 | DO25 | DI2 | 9 59 | DI34 | | DO56 | 91 41 | DO24 | DI3 | 10 60 | DI35 | | DO55 | 90 40 | DO23 | DI4 | 11 61 | DI36 | | DO54 | 89 39 | DO22 | DI5 | 12 62 | DI37 | | DO53 | 88 38 | DO21 | DI6 | 13 63 | DI38 | | DO52 | 87 37 | DO20 | DI7 | 14 64 | DI39 | | DO51 | 86 36 | DO19 | DI8 | 15 65 | DI40 | | DO50 | 85 35 | DO18 | DI9 | 16 66 | DI41 | | DO49 | 84 34 | DO17 | DI10 | 17 67 | DI42 | | DO48 | 83 33 | DO16 | DI11 | 18 68 | DI43 | | GND | 82 32 | GND | DI12 | 19 69 | DI44 | | GND | 81 31 | GND | DI13 | 20 70 | DI45 | | GND | 80 30 | GND | DI14 | 21 71 | DI46 | | GND | 79 29 | GND | DI15 | 22 72 | DI47 | | GND | 78 28 | GND | ECOM0 | 23 73 | ECOM2 | | GND | 77 27 | GND | ECOM0 | 24 74 | ECOM2 | | NC | 76 26 | NC | NC | 25 75 | NC | | NC | 75 25 | NC | NC | 26 76 | NC | | PCOM2 | 74 24 | PCOM0 | GND | 27 77 | GND | | PCOM2 | 73 23 | PCOM0 | GND | 28 78 | GND | | DO47 | 72 22 | DO15 | GND | 29 79 | GND | | DO46 | 71 21 | DO14 | GND | 30 80 | GND | | DO45 | 70 20 | DO13 | GND | 31 81 | GND | | DO44 | 69 19 | DO12 | GND | 32 82 | GND | | DO43 | 68 18 | DO11 | DI16 | 33 83 | DI48 | | DO42 | 67 17 | DO10 | DI17 | 34 84 | DI49 | | DO41 | 66 16 | DO9 | DI18 | 35 85 | DI50 | | DO40 | 65 15 | DO8 | DI19 | 36 86 | DI51 | | DO39 | 64 14 | DO7 | DI20 | 37 87 | DI52 | | DO38 | 63 13 | DO6 | DI21
DI22 | 38 88 | DI53 | | DO37 | 62 12 | DO5 | | 39 89
40 90 | DI54 | | DO36 | | DO4 | DI23 | $\overline{}$ | DI55 | | DO35
DO34 | 59 9 | DO3
DO2 | DI24
DI25 | 41 91
42 92 | DI56
DI57 | | DO34 | 58 8 | DO1 | DI25 | 43 93 | DI57 | | DO32 | 57 7 | DO1 | DI27 | 44 94 | DI59 | | GND | 56 6 | GND | DI28 | 45 95 | DI60 | | GND | 55 5 | GND | DI29 | 46 96 | DI61 | | GND | 54 4 | GND | DI30 | 47 97 | DI62 | | GND | 53 3 | GND | DI31 | 48 98 | DI63 | | GND | 52 2 | GND | ECOM1 | 49 99 | ECOM3 | | GND | 51 1 | GND | ECOM1 | 50 100 | ECOM3 | | 3 | ست | 2.1.2 | | | | | | CNB | | | CNA | | Figure 3.4 PCI-1758UDIO I/O Connector Pin Assignments | | | ı | | | | |----------------|----------------|--------------|--------------|--------|--------------| | ECOM7 | 100 50 | ECOM5 | GND | 1 51 | GND | | ECOM7 | 99 49 | ECOM5 | GND | 2 52 | GND | | DI127 | 98 48 | DI95 | GND | 3 53 | GND | | DI126 | 97 47 | DI94 | GND | 4 54 | GND | | DI125 | 96 46 | DI93 | GND | 5 55 | GND | | DI124 | 95 45 | DI92 | GND | 6 56 | GND | | DI123 | 94 44 | DI91 | DIO | 7 57 | DI32 | | DI122 | 93 43 | DI90 | DI1 | 8 58 | DI33 | | DI121 | 92 42 | DI89 | DI2 | 9 59 | DI34 | | DI120 | 91 41 | DI88 | DI3 | 10 60 | DI35 | | DI119 | 90 40 | DI87 | DI4 | 11 61 | DI36 | | DI118 | 89 39 | DI86 | DI5 | 12 62 | DI37 | | DI117 | 88 38 | DI85 | DI6 | 13 63 | DI38 | | DI116 | 87 37 | DI84 | DI7 | 14 64 | DI39 | | DI115 | 86 36 | DI83 | DI8 | 15 65 | DI40 | | DI114 | 85 35 | DI82 | DI9 | 16 66 | DI41 | | DI113 | 84 34 | DI81 | DI10 | 17 67 | DI42 | | DI112 | 83 33 | DI80 | DI11 | 18 68 | DI43 | | GND | 82 32 | GND | DI12 | 19 69 | DI44 | | GND | 81 31 | GND | DI13 | 20 70 | DI45 | | GND | 80 30 | GND | DI14 | 21 71 | DI46 | | GND | 79 29 | GND | DI15 | 22 72 | DI47 | | GND | 78 28 | GND | ECOM0 | 23 73 | ECOM2 | | GND | 77 27 | GND | ECOM0 | 24 74 | ECOM2 | | NC | 76 26 | NC | NC | 25 75 | NC | | NC | 75 25 | NC | NC | 26 76 | NC | | ECOM6 | 74 24 | ECOM4 | GND | 27 77 | GND | | ECOM6 | 73 23 | ECOM4 | GND | 28 78 | GND | | DI111 | 72 22 | D179 | GND | 29 79 | GND | | DI110 | 71 21 | DI78 | GND | 30 80 | GND | | DI109 | 70 20 | D177 | GND | 31 81 | GND | | DI108 | 69 19 | D176 | GND | 32 82 | GND | | DI107 | 68 18 | D175 | DI16 | 33 83 | DI48 | | DI106 | 67 17 | DI74 | DI17 | 34 84 | DI49 | | DI105 | 66 16 | D173 | DI18 | 35 85 | DI50 | | DI104 | 65 15 | D172 | DI19 | 36 86 | DI51 | | DI103
DI102 | 64 14 | DI71 | DI20 | 37 87 | DI52
DI53 | | DI102 | 63 13
62 12 | DI70
DI69 | DI21
DI22 | 38 88 | DI53 | | DI101 | 61 11 | DI68 | DI22 | 40 90 | DI54 | | | | | | 44 04 | | | DI99
DI98 | 59 9 | DI67
DI66 | DI24
DI25 | 41 91 | DI56
DI57 | | DI97 | 58 8 | DI65 | DI26 | 43 93 | DI58 | | DI96 | 57 7 | DI64 | DI27 | 44 94 | DI59 | | GND | 56 6 | GND | DI28 | 45 95 | DI60 | | GND | 55 5 | GND | DI29 | 46 96 | DI61 | | GND | 54 4 | GND | DI30 | 47 97 | DI62 | | GND | 53 3 | GND | DI31 | 48 98 | DI63 | | GND | 52 2 | GND | ECOM1 | 49 99 | ECOM3 | | GND | 51 1 | GND | ECOM1 | 50 100 | ECOM3 | | | = | | | | | | | CNB | | | CNIA | | | | CIVID | | | CNA | | Figure 3.5 PCI-1758UDI I/O Connector Pin Assignments Figure 3.6 PCI-1758UDO I/O Connector Pin Assignments # 3.4.1 I/O Connector Pin Definition | Table 3.4: I/O Connector Pin Definition | | | | |---|------|--|--| | Pin Name | Туре | Description | | | Digital Input | | | | | DI<07> | 1 | Digital input channel 0 ~ 7 (port 0) | | | DI<815> | 1 | Digital input channel 8 ~ 15 (port 1) | | | ECOM0 | 1 | External common point for digital input port 0 & 1 | | | DI<1623> | 1 | Digital input channel 16 ~ 23 (port 2) | | | DI<2431> | 1 | Digital input channel 24 ~ 31 (port 3) | | | ECOM1 | 1 | External common point for digital input port 2 & 3 | | | DI<3239> | 1 | Digital input channel 32 ~ 39 (port 4) | | | DI<4047> | 1 | Digital input channel 40 ~ 47 (port 5) | | | ECOM2 | 1 | External common point for digital input port 4 & 5 | | | DI<4855> | 1 | Digital input channel 48 ~ 55 (port 6) | | | DI<5663> | 1 | Digital input channel 56 ~ 63 (port 7) | | | ECOM3 | 1 | External common point for digital input port 6 & 7 | | | Digital Output | | | | | DO<07> | 0 | Digital output channel 0 ~ 7 (port 0) | | | DO<815> | 0 | Digital output channel 8 ~ 15 (port 1) | | | PCOM0 | 1 | Power common point for digital output port 0 & 1 | | | DO<1623> | 0 | Digital output channel 16 ~ 23 (port 2) | | | DO<2431> | 0 | Digital output channel 24 ~ 31 (port 3) | | | PCOM1 | 1 | Power common point for digital output port 2 & 3 | | | DO<3239> | 0 | Digital output channel 32 ~ 39 (port 4) | | | DO<4047> | 0 | Digital output channel 40 ~ 47 (port 5) | | | PCOM2 | | Power common point for digital output port 4 & 5 | | | DO<4855> | 0 | Digital output channel 48 ~ 55 (port 6) | | | DO<5663> | 0 | Digital output channel 56 ~ 63 (port 7) | | | PCOM3 | I | Power common point for digital output port 6 & 7 | | | Others | | | | | GND | - | Ground | | | NC | - | No connect | | # 3.4.2 Isolated Digital Input Each isolated digital input channel accepts bi-directional 5 \sim 25 V_{DC} voltage inputs. This means users can apply positive or negative voltage to an isolated input pin(VIN). Every 16 input channels share one common pin. Each digital input channel supports wet contact or dry contact operation, which can be selected by hardware jumpers. Refer to Chapter 3.3 for more detailed description on hardware jumper settings. For wet contact operation, the input voltage is applied between the DI pin and the corresponding ECOM pin. If the input voltage is within OFF or ON state logic level, a logic low (0) or high (1) will be sensed, respectively. If the input voltage is between the OFF and ON state logic levels, the result is undetermined, which may be low or high. User should ensure the ON/OFF state voltages of the sensors or switches meet the required values. Do not input a voltage higher than the maximum value of ON state logic level. The device may be damaged under such circumstance. Refer to Appendix A Specifications for OFF and ON state logic level for the device. For dry contact operation, shorting the DI pin to the GND pin results in a logic high (1). If the DI pin is kept floating, a logic low (0) will be sensed. Each digital input channel is equipped with a galvanic isolator, which can withstand a large continuous voltage between external side and internal side. This prevents internal circuit from damaging when such fault condition happens. Figure 3.7 shows how to connect an external input source to one of the card's isolated input channels. Figure 3.7 Isolated Digital Input Connection # 3.4.3 Isolated Digital Output An isolated digital output channel sends a signal through a galvanic isolator to control the ON/OFF state of a MOSFET switch. The state of the MOSFET switch then decides if the load is conducting or not. The digital output channel supports sink (NPN) type connection as shown in below picture. For sink (NPN) type digital output, the current flows from the load into the DO pin. Ensure the negative terminal of the external voltage source to be connected to the GND pin for proper operation. Both the voltage of the external voltage source and the load current must be within the range as specified in Appendix A Specifications. The device may be damaged if the voltage or current is beyond the maximum value. Each digital output channel is equipped with a galvanic isolator, which can withstand a large continuous voltage between external side and internal side. This prevents internal circuit from damaging when such fault condition happens. The device is also equipped with flyback diodes for each channel. The flyback diode provide a continuous current path for inductive load to dissipate energy when the digital output channel becomes OFF. This prevents the inductive load from generating a large back EMF which may damage the device. Every four digital output channels are equipped with one polyswitch to limit the load current. Do not exceed the load current value specified in Appendix A Specifications for proper operations. Figure 3.8 Isolated Digital Output Connection # 3.5 Field Wiring Considerations When using PCI-1758 series cards to acquire data from an outdoor environment, noises in the environment can significantly affect the accuracy of measurements if due cautions are not taken. The following measures can help reduce possible interference on signal wires connecting signal sources to the PCI-1758 series card. - Signal cables must be kept away from strong electromagnetic sources, such as power lines, large electric motors, circuit breakers, or welding machines, as these may cause strong electromagnetic interference. Keep analog signal cables away from any video monitors because they can significantly affect data acquisition systems. - If signal cables are routed through an area with significant electromagnetic interference, users should employ individually shielded, twisted-pair wires as analog input cables. This type of cable features signal wires twisted together and shielded with a metal mesh. The metal mesh should only be connected to one point at the signal source ground. - Avoid running the signal cables through any conduit that may also contain power lines. - If the signal cable must be routed parallel to a high-voltage.current power line, try to maintain a safe distance between the two cables. Alternatively, the signal cable can be placed at a right angle to the power line to minimize the undesirable effect. # Appendix A Specifications # A.1 Isolated Digital Input (PCI-1758UDI & PCI-1758UDIO) | Number of Input Channels | PCI-1758UDI: 128 (16 ports)
PCI-1758UDIO: 64 (8 ports) | | | |----------------------------|--|--|--| | Interrupt Inputs | PCI-1758UDI: 128
PCI-1758UDIO: 64 | | | | Digital Filter for Inputs | PCI-1758UDI: 128
PCI-1758UDIO: 64 | | | | Isolation protection | 2500 V _{DC} | | | | Response Time | 100 µs | | | | Over-Voltage Protection | 70 V _{DC} | | | | Input Resistance | 3 KΩ typ | | | | Input type | Wet contact or dry contact | | | | Wet contact (referenced to | VIL (max.) | ± 2.5 V _{DC} | | | ECOM<07>) | VIH (max.) | -25 V \sim -5 V or 5 V \sim 25 V V _{DC} | | | Dry contact | OFF state | Connect to GND | | | Dry contact | ON state | Open | | | Filter duration | 200 ns \sim 859 s, software configurable, this setting applies to all enabled channels | | | | | | | | # A.2 Isolated Digital Output (PCI-1758UDO & PCI-1758UDIO) | Number of Output Channels | PCI-1758UDO: 128 (16 ports)
PCI-1758UDIO: 64 (8 ports) | |-----------------------------|---| | Optical Isolation | 2500 V _{DC} | | Opto-Isolator Response Time | 100 μs | | Supply Voltage | 5 ~ 40 V _{DC} | | Sink Current | 350mA max./channel @25 °C
250mA max./channel @60 °C | # A.3 General | I/O Connector Type | 2 x 100-pin mini-SCSI
(female) | | |--------------------|--|---| | Dimensions | 168 x 100 mm (6.6 x 3 | .9 in) | | Temperature | Operating | 0 ~ 60 °C (32 ~ 140 ° F)
(refer to IEC 68-2-1,2) | | | Storage | -20 ~ 70 °C (-4 ~ 158 °F) | | Relative Humidity | 5 ~ 95% RH non-condensing (refer to IEC 60068-2-3) | | | Certification | CE Class A certified | | # **A.4 Power Consumption** | | PCI-1758UDIO | PCI-1758UDI | PCI-1758UDO | |---------|--------------|--------------|--------------| | Typical | 5 V@ 50mA | 5 V@ 50mA | 5 V@ 50mA | | | 12 V @ 20mA | 12 V @ 20mA | 12 V @ 20mA | | Max. | 5 V@ 425mA | 5 V@ 220mA | 5 V@ 385mA | | | 12 V @ 325mA | 12 V @ 250mA | 12 V @ 250mA | # Appendix B **Block Diagrams** # **B.1 Block Diagrams** PCI-1758UDIO # PCI-1758UDI # PCI-1758UDO # www.advantech.com Please verify specifications before quoting. This guide is intended for reference purposes only. All product specifications are subject to change without notice. No part of this publication may be reproduced in any form or by any means, such as electronically, by photocopying, recording, or otherwise, without prior written permission from the publisher. All brand and product names are trademarks or registered trademarks of their respective companies. © Advantech Co., Ltd. 2020