

User Manual

MIC-3392MIL

6U CompactPCI[®] Intel[®]
Core[™] 2 Duo Processor Based
Board with Dual PCIe
GbE/DDR2/SATA

Trusted ePlatform Services

Copyright

The documentation and the software included with this product are copyrighted 2010 by Advantech Co., Ltd. All rights are reserved. Advantech Co., Ltd. reserves the right to make improvements in the products described in this manual at any time without notice. No part of this manual may be reproduced, copied, translated or transmitted in any form or by any means without the prior written permission of Advantech Co., Ltd. Information provided in this manual is intended to be accurate and reliable. However, Advantech Co., Ltd. assumes no responsibility for its use, nor for any infringements of the rights of third parties, which may result from its use.

Acknowledgements

All other product names or trademarks are properties of their respective owners.

Product Warranty (2 years)

Advantech warrants to you, the original purchaser, that each of its products will be free from defects in materials and workmanship for two years from the date of purchase.

This warranty does not apply to any products which have been repaired or altered by persons other than repair personnel authorized by Advantech, or which have been subject to misuse, abuse, accident or improper installation. Advantech assumes no liability under the terms of this warranty as a consequence of such events.

Because of Advantech's high quality-control standards and rigorous testing, most of our customers never need to use our repair service. If an Advantech product is defective, it will be repaired or replaced at no charge during the warranty period. For out-of-warranty repairs, you will be billed according to the cost of replacement materials, service time and freight. Please consult your dealer for more details.

If you think you have a defective product, follow these steps:

- Collect all the information about the problem encountered. (For example, CPU speed, Advantech products used, other hardware and software used, etc.) Note anything abnormal and list any onscreen messages you get when the problem occurs.
- 2. Call your dealer and describe the problem. Please have your manual, product, and any helpful information readily available.
- 3. If your product is diagnosed as defective, obtain an RMA (return merchandise authorization) number from your dealer. This allows us to process your return more quickly.
- 4. Carefully pack the defective product, a fully-completed Repair and Replacement Order Card and a photocopy proof of purchase date (such as your sales receipt) in a shippable container. A product returned without proof of the purchase date is not eligible for warranty service.
- 5. Write the RMA number visibly on the outside of the package and ship it prepaid to your dealer.

Part No. 2002339231 Printed in Taiwan Edition 2 March 2010

Declaration of Conformity

CE

This product has passed the CE test for environmental specifications when shielded cables are used for external wiring. We recommend the use of shielded cables.

FCC Class A

Note: This equipment has been tested and found to comply with the limits for a Class A digital device, pursuant to part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference when the equipment is operated in a commercial environment. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used in accordance with the instruction manual, may cause harmful interference to radio communications. Operation of this equipment in a residential area is likely to cause harmful interference in which case the user will be required to correct the interference at his own expense.

FM

This equipment has passed the FM certification. According to the National Fire Protection Association, work sites are classified into different classes, divisions and groups, based on hazard considerations. This equipment is compliant with the specifications for Class I, Division 2, Groups A, B, C, and D indoor hazards.

Technical Support and Assistance

- 1. Visit the Advantech web site at www.advantech.com/support where you can find the latest information about the product.
- Contact your distributor, sales representative, or Advantech's customer service center for technical support if you need additional assistance. Please have the following information ready before you call:
 - Product name and serial number
 - Description of your peripheral attachments
 - Description of your software (operating system, version, application software, etc.)
 - A complete description of the problem
 - The exact wording of any error messages

Warnings, Cautions and Notes

Warning! Warnings indicate conditions, which if not observed, can cause personal injury!

Caution! Cautions are included to help you avoid damaging hardware or losing data. e.g.

There is a danger of a new battery exploding if it is incorrectly installed. Do not attempt to recharge, force open, or heat the battery. Replace the battery only with the same or equivalent type recommended by the manufacturer. Discard used batteries according to the manufacturer's instructions.

Note!

Notes provide optional additional information.

Document Feedback

To assist us in making improvements to this manual, we would welcome comments and constructive criticism. Please send all such - in writing to: support@advantech.com

Packing List

- MIC-3392MIL all-in-one single board computer (CPU and MCH heatsinks included) x1
- Utility and user manual (PDF file) CD-ROM disc x1
- HDD tray (Assembled) x 1 for MIC-3392MILS models
- Daughter board for SATA HDD (Assembled) x1 for MIC-3392MILS models
- Solder-side cover (Assembled) x1 for MIC-3392MILS models
- Warranty certificate document x1
- Safety Warnings: CE, FCC class A

If any of these items are missing or damaged, contact your distributor or sales representative immediately.

Safety Instructions

- Read these safety instructions carefully.
- 2. Keep this User Manual for later reference.
- 3. Disconnect this equipment from any AC outlet before cleaning. Use a damp cloth. Do not use liquid or spray detergents for cleaning.
- 4. For plug-in equipment, the power outlet socket must be located near the equipment and must be easily accessible.
- 5. Keep this equipment away from humidity.
- 6. Put this equipment on a reliable surface during installation. Dropping it or letting it fall may cause damage.
- 7. The openings on the enclosure are for air convection. Protect the equipment from overheating. DO NOT COVER THE OPENINGS.
- 8. Make sure the voltage of the power source is correct before connecting the equipment to the power outlet.
- 9. Position the power cord so that people cannot step on it. Do not place anything over the power cord.
- 10. All cautions and warnings on the equipment should be noted.
- 11. If the equipment is not used for a long time, disconnect it from the power source to avoid damage by transient overvoltage.
- 12. Never pour any liquid into an opening in the device. This may cause fire, or electrical shock, or damage to the equipment.
- 13. Never open the equipment. For safety reasons, the equipment should be opened only by qualified service personnel.
- 14. If one of the following situations arises, get the equipment checked by service personnel:
- 15. The power cord or plug is damaged.
- 16. Liquid has penetrated into the equipment.
- 17. The equipment has been exposed to moisture.
- 18. The equipment does not work well, or you cannot get it to work according to the user's manual.
- 19. The equipment has been dropped and damaged.
- 20. The equipment has obvious signs of breakage.
- 21. DO NOT LEAVE THIS EQUIPMENT IN AN ENVIRONMENT WHERE THE STORAGE TEMPERATURE MAY GO BELOW -20° C (-4° F) OR ABOVE 60° C (140° F). THIS COULD DAMAGE THE EQUIPMENT. THE EQUIPMENT SHOULD BE IN A CONTROLLED ENVIRONMENT.
- 22. CAUTION: DANGER OF EXPLOSION IF BATTERY IS INCORRECTLY REPLACED. REPLACE ONLY WITH THE SAME OR EQUIVALENT TYPE RECOMMENDED BY THE MANUFACTURER, DISCARD USED BATTERIES ACCORDING TO THE MANUFACTURER'S INSTRUCTIONS.
- 23. The sound pressure level at the operator's position according to IEC 704-1:1982 is no more than 70 dB (A).

DISCLAIMER: This set of instructions is given according to IEC 704-1. Advantech disclaims all responsibility for the accuracy of any statements contained herein.

Safety Precaution - Static Electricity

Follow these simple precautions to protect yourself from harm and the products from damage.

- To avoid electrical shock, always disconnect the power from your PC chassis before you work on it. Don't touch any components on the CPU card or other cards while the PC is on.
- Take anti-static precautions before making any configuration changes. The sudden rush of power from electrostatic discharge events when you connect a jumper or install a card may damage sensitive electronic components.

Product Configurations

Cyatam Doord		Fro	nt Pane	el	Conduction		Conformal				
System Board Model Number	VGA	USB 2.0	BMC Reset	System Reset	Cool	CPU	Memory	CF Socket	Storage Channel	SODIMM Socket	Coating
MIC-3392MILS- P1E	1	2	V	V	-	Intel U7500	2 GB	1	1	1	-
MIC-3392MILS- P2E	1	2	V	V	-	Intel L2400	2 GB	1	1	1	-
MIC-3392MILC- P1E	-	-	-	-	V	Intel U7500	2 GB	1	-	-	V
MIC- 3392MILSX- P2E	1	2	٧	V	-	Intel L2400	2 GB	1	1	1	-

RTM		Rear Panel					On-board Header/Socket/Connector							
Model Num- ber	LAN	СОМ	DVI-I	PS2	USB	IDE	FDD	LPT	SATA	COM Interface	Console Interface	USB Inter- face	CPCI Conn.	Conformal Coating
RIO-3392MIL- A1E	4	1	2	1	2	1	1	1	2	1	1	2	J3~J5	-
RIO-3392MIL- A2E	4	1	2	1	2	1	1	1	2	1	1	2	J3~J5	V

Note!

We do not recommend using the MIC-3392MIL as a system board to support a MIC-3951 peripheral carrier board with Advantech's phased out dual gigabit Ethernet PMC cards such as the MIC-3661 and the MIC-3662.

We Appreciate Your Input

Please let us know of any aspect of this product, including the manual, which could use improvement or correction. We appreciate your valuable input in helping make our products better.

Contents

Chapter	1	Hardware Configuration					
	1.1	Introduction					
		Table 1.1: MIC-3392MIL Variants2					
	1.2	Specifications					
		1.2.1 CompactPCI Bus Interface					
		1.2.2 CPU					
		Table 1.2: Intel processor selection for the MIC-3392MIL3					
		1.2.3 BIOS					
		1.2.4 Chipset					
		1.2.5 Memory4					
		Table 1.3: DDR2 SODIMM Tested on the MIC-3392MIL4					
		1.2.6 Ethernet					
		1.2.7 Storage Interface4					
		1.2.8 Serial Interface5					
		1.2.9 USB Port5					
		1.2.10 LEDs5					
		1.2.11 Watchdog Timer5					
		1.2.12 Optional Rear I/O Modules5					
		1.2.13 Mechanical and Environmental Specifications					
		1.2.14 Compact Mechanical Design					
		1.2.15 CompactPCI Bridge					
		1.2.16 I/O Connectivity					
		1.2.17 Hardware Monitor					
		1.2.18 Super I/O					
		1.2.19 RTC and Battery					
		1.2.20 IPMI					
	4.0	1.2.21 Pre-Heat on the Conduction-Cooled Model					
	1.3	Functional Block Diagram8 Figure 1.1 MIC-3392MIL functional block diagram8					
	1.4	Jumpers and Switches9					
	1.7	Table 1.4: MIC-3392MIL jumper descriptions9					
		Table 1.5: MIC-3392MIL switch descriptions9					
		1.4.1 Jumper Settings9					
		Table 1.6: JP5 VGA Output Setting9					
		Table 1.7: JP7 Compact Flash Master/Slave Mode Selection 9					
		1.4.2 Clear CMOS (JP6)					
		Table 1.8: JP6 Clear CMOS10					
		1.4.3 Switch Settings					
		Table 1.9: SW1 PCI Bridge Master/Drone Mode Selection 10					
		Table 1.10: SW2 BMC Reset/Platform Reset (available on the					
		Front Panel only)10					
		Table 1.11: SW3 SATA Port 1 Channel Setting11					
		Table 1.12: SW4 BMC Firmware Programming/Console Setting 11					
	1.5	Connector Definitions12					
		Table 1.13: MIC-3392MIL connector descriptions					
		Figure 1.2 MIC-3392MIL jumper and switch locations					
		1.5.1 VGA Display Connector (VCN1)13					
		1.5.2 USB Connectors (CN11/12)13					
		1.5.3 CMOS Battery (BH1)13					
		1.5.4 CompactFlash Socket (CN10)13					
		1.5.5 SATA Daughter Board Connector (CN4)13					
		1.5.6 Pre-heat Heater Pad Power Connector (CN13)13					
	1.6	Safety Precautions14					
	1.7	Installing CompactFlash in the MIC-3392MILC Model14					

		1.7.1	Wedge Locks Removal	14 oled
		1.7.2	plate PCB Guide Base Removal Figure 1.5 Remove the M2 screws for the PCB guide bases Figure 1.6 Remove the PCB guide bases from the conduction cooled plate	15 15 on-
		1.7.3	Conduction-Cooled Plate Removal. Figure 1.7 Remove the M2.5 screws from the secondary sid the PCB	16 e of
			Figure 1.8 Remove the conduction-cooled plate from the box	ard
		1.7.4	CF Card Insertion	17
			Figure 1.9 Insert the CF card in CN10	
		1.7.5	Reassembling the Conduction-cooled Assembly	
			Figure 1.10PCB guide base (left) assembly orientation	
			Figure 1.11PCB guide base (right) assembly orientation	
			Figure 1.12Wedge lock hexagon socket head cap screw	
	1.0	Coffus	Figure 1.13M2 x.40 screw locations	
	1.8	SUILWA	are Support	20
Chapter	2	AM	I BIOS Setup	21
	2.1	Introdu	uction	22
			Figure 2.1 Setup program initial screen	
	2.2	Enterir	ng Setup	
			Figure 2.2 Sample BIOS patch code	
	2.3	Main S	Setup	24
			Figure 2.3 Main setup screen	
		2.3.1	System Time/System Date	24
	2.4	Advan	ced BIOS Features Setup	25
			Figure 2.4 Advanced BIOS features setup screen	
		2.4.1	CPU Configuration	
			Figure 2.5 CPU configuration	
		2.4.2	IDE Configuration	
			Figure 2.6 IDE configuration	
		2.4.3	Floppy Configuration	
			Figure 2.7 Floppy configuration	
		2.4.4	Super I/O Configuration	
			Figure 2.8 Super I/O configuration	
		2.4.5	Hardware Health Configuration	
			Figure 2.9 Hardware health configuration	
		2.4.6	ACPI Setting	
			Figure 2.10ACPI setting	
		2.4.7	APM Configuration	
			Figure 2.11APM configuration	
		2.4.8	Console Redirection Configuration	
			Figure 2.12Console re-direction configuration	
	2.5	PCI/Pr	nP Setup	
			Figure 2.13PCI/PnP setup	
		2.5.1	Clear NVRAM	
		2.5.2	Plug and Play O/S	
		2.5.3	PCI Latency Timer	
	2.6	Boot S	Setup	
		0.0.1	Figure 2.14Boot setup	
		2.6.1	Boot Settings Configuration	
	c =		Figure 2.15Boot settings configuration	
	27	Securi	ty Setup	36

			Figure 2.16Password configuration	
	2.8	Advan	ced Chipset Settings	
			Figure 2.17Advanced chipset setting	
		2.8.1	North Bridge Chipset Configuration	
			Figure 2.18North bridge chipset configuration	
			Figure 2.19Video function configuration	
		2.8.2	South Bridge Chipset Configuration	
			Figure 2.20 South bridge chipset configuration	
	2.9	Exit O	otions	
			Figure 2.21 Exit options	
		2.9.1	Save Changes and Exit	
		2.9.2	Discard Changes and Exit	
		2.9.3	Load Defaults	40
Chapter	3	Pre	-heating for the	
		MIC	-3392MIL	41
	3.1	Introdu	iction	42
			Figure 3.1 Pre-heat thermal sensor (DS1631AU) location	
			Figure 3.2 Pin definitions of CN13	43
	3.2	Pre-he	at Firmware Operation	43
		3.2.1	Standard Pre-heat Mode	
		3.2.2	Extended Pre-heat Mode	
		3.2.3	BMC Communication Interface to the x86 System	44
			Table 3.1: Internal register map for the pre-heat firmware	
			controller	
		3.2.4	Read/Write the Internal Registers	
			Figure 3.3 Set-up for read/write access to the internal regist	
		3.2.5	Illustration of Accessing an Internal Register of BMC	
			Figure 3.4 <enter> "debug32" utility</enter>	47
Chapter	4	IPM	II for the MIC-3392MILS	51
	4.1		uction	
	4.2		ions	
	4.3		unction List	
		4.3.1	IPMI Device Global Commands	
			Table 4.1: Supported IPMI device global commands	53
		4.3.2	BMC Device and Messaging Interfaces	
			Table 4.2: H8S I2C bus connection to NIC SMBus	
			Table 4.3: NIC interrupt	
			Table 4.4: BMC device and messaging commands	
		4.3.3	BMC Watchdog Timer Commands	
		404	Table 4.5: BMC watchdog timer commands	
		4.3.4	Chassis Device Commands	
		405	Table 4.6: Chassis device commands	
		4.3.5	Event Commands	
		126	Table 4.7: Event commands	
		4.3.6	PEF and Alerting Commands	
		4.3.7	Table 4.8: PEF and alerting commands	
		4.J.1		
			Table 4.0: SEL device commands	56
		4 3 B	Table 4.9: SEL device commands	
		4.3.8	SDR Device Commands	56
			SDR Device Commands Table 4.10: SDR device commands	56 56
		4.3.8 4.3.9	SDR Device Commands Table 4.10: SDR device commands FRU Data	56 56 56
		4.3.9	SDR Device Commands Table 4.10: SDR device commands	56 56 56

	Table 4.13: Threshold values of sensors	58
	Table 4.14: Sensor device commands	58
	4.3.11 Serial/Modem Device Commands	58
	Table 4.15: Serial Modem device commands	58
4.4	BMC Reset	59
Appendix A	Pin Assignments	61
A.1	J1 Connector	60
A.I	Table A.1: J1 CompactPCI I/O	
A.2	J2 Connector	
<u> </u>	Table A.2: J2 CompactPCI I/O	
A.3	J3 Connector	
	Table A.3: J3 CompactPCI I/O (LAN1/LAN2, 2.16)	64
A.4	J4 Connector	
	Table A.4: J4 CompactPCI I/O (Audio, LAN3/LAN4, IDE, S	
	USB, and DVI)	
A.5	J5 Connector	
	Table A.5: J5 CompactPCI I/O (USB, PS2, COM, FDD, D	
A 0	VGA)	
A.6	Other Connector	
	Table A.6: CN4 SATA daughter board connector	67
Appendix B	Pin Assignments	69
B.1	M/D, PWR, BMC HB, and IDE/Hot-swap LEDs	70
Appendix C	Programming the Watchdog Time	r. 71
C.1	Watchdog Timer Programming Procedure	72
A non-amplify D	CDI D	70
Appendix D	CPLD	/ 3
D.1	Features	74
D.2	CPLD I/O Registers	
	Table D.1: LPC I/O registers address	
	D.2.1 Debug Message	74
	Table D.2: Debug_Code [7:0] (LPC I/O address: 80H)	74
	D.2.2 Watchdog Register	74
	Table D.3: Watchdog [7:0] (LPC I/O address: 443H)	
	D.2.3 Watchdog Disable Register	
	Table D.4: Watchdog [7:0] (LPC I/O address: 444H)	
	Table D.5: Version [7:0] (LPC I/O address: 445H)	
	D.2.4 Geography Address (GA)	
	Table D.6: GA [7:0] (LPC I/O address: 447H)	/5
Appendix F	Glossary	77
	— · · · · · · · · · · · · · · · · · · ·	

Chapter

Hardware Configuration

This chapter describes how to configure MIC-3392MIL hardware.

1.1 Introduction

The MIC-3392MIL is a high performance, power efficient, CompactPCI PICMG2.16 compliant single-board computer based on the Intel Core2 Duo ULV or Core Duo LV microprocessor. Designed to meet a wide range of environmental requirements from ruggedized applications, the MIC-3392MIL delivers breakthrough energy-efficient performance for CompactPCI platforms. Both Intel Core 2 Duo ULV and Core Duo LV processors provide high MIPS-per-watt performance to help equipment manufacturers optimally balance processing capabilities within power and space constraints. Based on the ULV processor in particular, the SBC offers a low power dissipation design without the need of on-board forced ventilation. Ruggedized requirements are addressed by a conduction-cooled design and extended operating temperature range (-40° C \sim 70° C). Shock and vibration resistances of the board are increased by using wedge locks and a single piece of CNC-milled aluminum alloy plate that conforms to the major IC packages.

The MIC-3392MIL maximizes I/O throughput with PCI Express (PCIe) technology. It supports up to 3 GB of 667 MHz DDR2 memory provided by a combination of SO-DIMM and soldered DRAM (6.4 GB/sec throughput). It supports a fast Serial-ATA interface to an on-board hard drive or CompactFlash socket. In addition, combined with a dedicated RTM (or rear I/O module) called RIO-3392-MIL, it offers a rich variety of I/O interfaces for connections.

The MIC-3392MIL is available in standard CPCI or rugged conduction cooled variant with different front I/O options as listed in the table below.

Table 1.1: MIC-3392MIL Variants							
Features	'S' model standard CPCI	'C' model Conduction Cooled					
VGA	1	-					
USB2.0	2	-					
BMC reset	V	-					
System reset	V	-					
On-board HDD	1	-					
CF socket	1	1					
SODIMM socket	1	-					
LEDs	4	-					

1.2 Specifications

1.2.1 CompactPCI Bus Interface

The MIC-3392MIL is compliant with PICMG 2.0 Rev. 3.0. It supports a 64-bit / 66 MHz or 33 MHz PCI bus for up to 7 CompactPCI slots at 3.3 V or 5 V VIO. The MIC-3392MIL is hot-swap compliant (PICMG 2.1) and conforms to the CompactPCI Packet Switching Backplane specification (PICMG 2.16) as well as the CompactPCI System Management Specification (PICMG 2.9).

Note! (PICMG 2.9) S modle only.

The board can be configured as a system master or a drone board. In drone mode it only draws power from the CompactPCI backplane and is not active on the CompactPCI bus. However, PICMG 2.16 is still fully supported in this mode.

1.2.2 CPU

The MIC-3392MIL supports the 65nm-technology Intel Core Duo LV and Intel Core 2 Duo ULV processor family with clock frequencies up to 1.66GHz GHz and a Front-Side Bus (FSB) up to 667 MHz. These processors are validated with the Mobile Intel 945GME Express chipset. This chipset provides greater flexibility for developers of embedded applications by offering improved graphics and increased I/O bandwidth over previous Intel chipsets, as well as remote asset management capabilities, and improved storage speed and reliability.

Currently supported processors are listed in the table below. The MIC-3392MILC model (conduction cooled) uses the U7500 processor. However, the MIC-3392MILS model can use either the U7500 or the L2400 processor.

Table 1.2: Intel processor selection for the MIC-3392MIL								
Model	Core speed	FSB speed	L2 cache	TDP	Package			
Intel Core Duo L2400	1.66 GHz	667 MHz	2 MB	15 W	FCBGA			
Intel Core2 Duo U7500	1.06 GHz	533 MHz	2 MB	10 W	FCBGA			

1.2.3 **BIOS**

An 8 Mbit Firmware Hub (FWH) contains a board-specific BIOS (from AMI) designed to meet industrial and embedded system requirements.

1.2.4 Chipset

The Mobile Intel 945GME chipset provides excellent flexibility for developers of embedded applications by offering improved graphics and increased I/O bandwidth over previous Intel chipsets, as well as remote asset management capabilities and improved storage speed and reliability. Features include an integrated 32-bit 3D graphics engine based on Intel Graphics Media Accelerator 950 (Intel GMA 950) architecture.

The Mobile Intel 945GME chipset consists of the Intel 82945GME Graphics Memory Controller Hub (GMCH) and Intel I/O Controller Hub 7-M (ICH7M). It delivers outstanding system performance through high bandwidth interfaces such as PCI Express, Serial ATA and Hi-Speed USB 2.0.

1.2.5 Memory

The MIC-3392MIL has 2 GB of on-board non-ECC DDR2 SDRAM. It also has a SODIMM socket that can accommodate an additional 2 GB of memory. However, with Intel 945GME chipset the OS may report a lower amount of total available memory such as 3 GB. The memory range unavailable to the OS will still be utilized by subsystems such as I/O, PCI-Express, and Integrated Graphics.

The following table shows a list of SODIMM modules with Advantech P-trade part numbers that have been tested on the MIC-3392MIL.

Table 1.3: DDR2 SODIMM Tested on the MIC-3392MIL								
Brand	Size	Speed	ECC	REG	Memory chip			
Transcend	2GB	667	NO	NO	Micron 7TE17 D9HNL			
Transcend	512MB	553	NO	NO	SEC 719 ZCE6 K4T51083QC			
DSL	512MB	PC2-4200	NO	NO	Elpida Japan E5116AB-5C-E			
Apacer	1GB	PC2-4300	NO	NO	Elpida TWN E5108AE-5C-E			

Note! DDR2 SODIMM is supported on the MIC-3392MILS model.

1.2.6 Ethernet

The MIC-3392MIL uses one Intel 82571EB LAN controller to provide 10/100/1000 Base-T Ethernet connectivity (LAN1/ LAN2 or PICMG2.16) and one Intel 82546GB LAN controller to provide 10/100 Base-T Ethernet connectivity (LAN3/LAN4) via the RJ-45 ports on the RTM. Optional settings for the source of the Gigabit Ethernet ports (82571EB) can be selected in the BIOS menu. These are mutually exclusive and can be any one of:

- LAN1/LAN2 of Rear I/O (on the RTM)
- PICMG 2.16

Note! PICMG 2.16 is used for RTM LAN1 and LAN2.

1.2.7 Storage Interface

The MIC-3392MIL supports two SATA channels and one IDE channel. The SATA1 interface can be routed to an onboard 2.5" SATA hard disk drive or to the RTM via the J4 connector. The onboard SATA port is only available on the MIC-3392MILS model. The SATA2 interface is also connected to the RTM via the J4 connector. The MIC-3392MIL also supports one IDE channel. The master is reserved for an on-board Type-I CF storage card. The slave is connected to the RTM via the J4 connector.

1.2.8 Serial Interface

Three serial interfaces are routed to the RTM via the J5 connector. The first one, implemented as the system console port by default, is available as a RJ-45 COM port on the RIO. The second one is available as COM2 connector on the RTM. And, the third one named COM3 available on the RTM is designed to serve as a console interface to the BMC.

1.2.9 **USB Port**

Six USB 2.0/1.1 compliant ports with fuse protection are provided. Two of them are routed to front panel connectors on the MIC-3392MILS model. The other four are routed to the RTM through the J4 and J5 connectors.

1.2.10 LEDs

Available on the MIC-3392MILS model, four LEDs are provided on the front panel as follows:

- One bi-color LED (blue/yellow) indicates hot sway and HDD activity. The blue color indicates that the board may be safely removed from the system, and the yellow color indicates HDD activity.
- One LED provides power status. When the LED is green, it means power is provided to the board.
- One LED indicates "Master" or "Drone" mode. The green color stands for "Master": mode. When the LED is off, the board is in "Drone" mode.
- One LED indicated BMC heart beat. When it flashes (yellow), it means the BMC is active.

1.2.11 Watchdog Timer

An onboard watchdog timer provides system reset capabilities via software control. The programmable time interval is from 1 to 255 seconds.

1.2.12 Optional Rear I/O Modules

The RIO-3392MIL is the optional RTM (also known as rear I/O module) for the MIC-3392MIL. It offers a wide variety of I/O features, such as four RJ45 LAN ports, one COM port, two DVI-I ports, two USB2.0 ports, and one P/S2 port. It also comes with on-board features such as IDE, parallel, audio, FDD, USB2.0, SATA, console, and COM interfaces (pin-headers).

1.2.13 Mechanical and Environmental Specifications

Operating temperature (for the MIC-3392MILS models):

 $0 \sim 70^{\circ} \text{ C } (-32 \sim 158^{\circ} \text{ F})$

■ Operating temperature (for the MIC-3392MILC & MIC-3392MILSX models):

 $-40 \sim 70^{\circ} \text{ C } (-40 \sim 158^{\circ} \text{ F})$

Storage Temperature:

 $-50 \sim 80^{\circ} \text{ C } (-58 \sim 176^{\circ} \text{ F})$

Humidity (Non-operating):

10 ~ 95% @ 45° C (non-condensing)

■ Power Consumption:

MIC-3392MILS model 2GB memory: +5 V @ 5.76 A; +3.3 V @ 8.48 A; +12 V @ 0.21 A

MIC-3392MILC model 2GB memory: +5 V @ 5.76 A; +3.3 V @ 8.48 A; +12 V @ 1.04 A

Board size: 233.35 x 160 mm (6U size), 1-slot (4 TE) wide

Weight:

MIC-3392MILS model: 0.97 kg (2.14 lb) MIC-3392MILC model: 1.05 kg (2.31 lb)

Shock (without the on-board hard disk drive): 20 G (operating); 50 G (non-operating) Random vibration: 1.5 Grms (operating), 2.0 Grms (non-operating)

1.2.14 Compact Mechanical Design

The MIC-3392MILS model has a specially designed copper heat sink for the processor to enable fanless operation. However, forced air cooling in the chassis is still needed for operational stability and reliability.

The MIC-3392MILC model uses a conduction-cooled design that complies with ANSI/VITA30.1-2002 specifications. It uses a pair of wedge locks and a single-piece of CNC-milled aluminum alloy plate that conforms to the major IC packages on the primary side of the PCB.

1.2.15 CompactPCI Bridge

The MIC-3392MIL uses a PLX PCI 6540 universal bridge as a gateway to an intelligent subsystem. When configured as a system controller, the bridge acts as a standard transparent PCI-X-to-PCI bridge. As a peripheral controller it allows the local

MIC-3392MIL processor to configure and control the onboard local subsystem independently from the CompactPCI bus host processor. The MIC-3392MIL local PCI subsystem is presented to the CompactPCI bus host as a single CompactPCI device. When the MIC-3392MIL is in drone mode, the PLX PCI 6540 is electrically isolated from the CompactPCI bus. The MIC-3392MIL receives power from the backplane, supports rear I/O and supports PICMG 2.16. The PLX PCI 6540 PCI bridge offers the following features:

- PCI Interface
 - Full compliance with the PCI Local Bus Specification, Revision 2.3
 - Supports 3.3V or 5V tolerance I/O
- Transparent and non-transparent bridge function
- 64-bit, 33MHz-133MHz asynchronous operation
- Support for 8 Bus Masters
- Usable in CompactPCI system slot or peripheral slot

- 10-KB Buffer Architecture for PCI-X-to-PCI-X and PCI-X-to-PCI bridging and speed conversion
- 1-KB downstream Posted Write buffer
- 1-KB upstream Poster Writer buffer
- 4-KB downstream Read Data buffer
- 4-KB upstream Read Data buffer

Please consult the PLX PCI 6540 data book for details.

1.2.16 I/O Connectivity

For the MIC-3392MIL, the front panel I/O is provided by one VGA port and two USB ports. Its on-board I/O consists of one IDE channel to a Compact Flash socket and one SATA channel which can be connected to a 2.5" SATA HDD. The MIC-3392MILC model does not have a front panel or the on-board SATA HDD module because its entire PCB is covered up by the conduction-cooled plate. For both models, the rear I/O connectivity is available via the following CompactPCI connectors:

- J3: two Gigabit Ethernet links to the backplane for PICMG 2.16 packet switch and two LAN ports on the RTM
- J4: two 10/100 LAN ports, one DVI-I port, two SATA ports, two USB ports, one IDE channel and one audio channel on the RTM
- J5: one DVI-I port, one VGA interface (also available on the front panel), two USB interfaces, one PS2 port (for keyboard/mouse), one FDD channel, one parallel channel, and three COM interfaces (available as RJ45 port, on-board console interface, and on-board COM interface) on the RTM

1.2.17 Hardware Monitor

One Hardware Monitor (W83627HG) is available to monitor critical hardware parameters. It is attached to the BMC to monitor the CPU temperature and core voltage information.

1.2.18 **Super I/O**

The MIC-3392MIL Super I/O device provides the following legacy PC devices:

- Serial ports COM1 and COM2 are connected to the rear I/O module.
- The parallel port is routed to the rear I/O module.
- The FDD is routed to the rear I/O module.
- The PS2 (keyboard/mouse) is routed to the rear I/O module.

1.2.19 RTC and Battery

The RTC module keeps the date and time. On the MIC-3392MILS model the RTC circuitry is connected to battery sources (CR2032M1S8-LF, 3V, 210mAH), one located on the board and the other on the RIO-3392MIL RTM. For the MIC-3392MILC model, the RTC circuitry can be connected to the battery source on the RIO-3392MIL only.

1.2.20 IPMI

The MIC-3392MILS model uses the Intelligent Platform Management Interface (IPMI) to monitor the health of an entire system. A Renesas H8S/2167 microcontroller provides BMC functionality to interface between system management software and platform hardware.

The MIC-3392MILS model implements fully-compliant IPMI 2.0 functionality and conforms to the PICMG 2.9 R1.0 specification. The IPMI firmware is based on proven technology from Avocent. Full IPMI details are covered in Chapter 4.

The MIC-3392MILC model does not have IPMI functionality.

1.2.21 Pre-Heat on the Conduction-Cooled Model

For reliable system boot performance under extreme low temperature conditions (e.g. -40° C), the MIC-3392MILC contains a 10W heater for warming up the PCB components when the board temperature is below -30° C. A special firmware implemented on the BMC is designed to control the heater on and off operations. Full preheat details are discussed in Chapter 3.

The MIC-3392MILS does not have the pre-heat functionality.

1.3 Functional Block Diagram

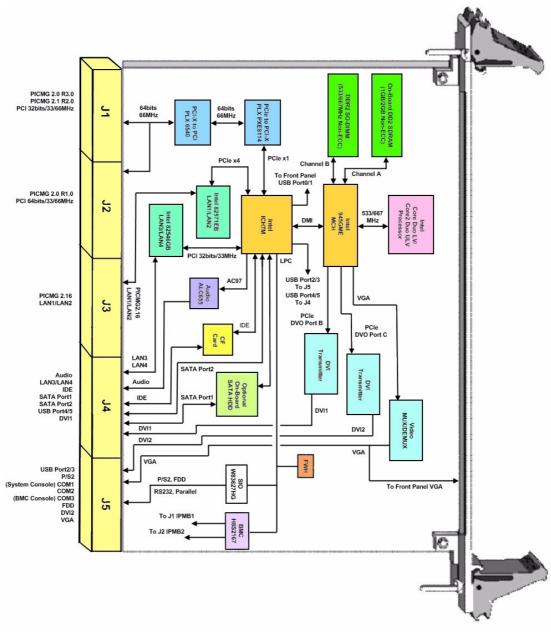


Figure 1.1 MIC-3392MIL functional block diagram

1.4 Jumpers and Switches

Table 1.4 and table 1.5 list the jumper and switch functions. Figure 1.2 illustrates the jumper and switch locations. Read this section carefully before changing the jumper and switch settings on your MIC-3392MIL board.

Table 1.4: MIC-3392MIL jumper descriptions					
Number	Function				
JP5	VGA Output Setting				
JP6	Clear CMOS				
JP7	CompactFlash Master/Slave Mode Selection				

Table 1.5: MIC-3392MIL switch descriptions						
Number	Function					
SW1	PCI Bridge Master/Drone Mode Selection					
SW2	BMC Reset/Platform Reset (available on the Front Panel only)					
SW3	SATA Port 1 Channel Setting					
SW4	BMC Firmware Programmable/Console Setting					

1.4.1 Jumper Settings

Table 1.6: JP5 VGA Output Setting

Default	Front Panel	1-2	1 2 3
	RTM	2-3	1 2 3

Table 1.7: JP7 Compact Flash Master/Slave Mode Selection

Default	IDE Master	Closed	1 2
	IDE Slave	Open	1 2

1.4.2 Clear CMOS (JP6)

This jumper is used to erase CMOS data and reset the system BIOS information. Follow the procedures below to clear the CMOS.

- 1. Turn off the system.
- 2. Close jumper JP6 (1-2) for about 3 seconds.
- 3. Set jumper JP6 as Normal.
- 4. Turn on the system. The BIOS is reset to its default setting.

Table 1.8: JP6 Clear CMOS			
Default	Normal	Open	1 2
	Clear CMOS	Closed	1 2

1.4.3 Switch Settings

Table 1.9: SW1 PCI B	ridge Master/Drone Mode Selection	
	Master	
Default	On On	ON
	Drone	
	Off Off	ON

Note!

Key: □ represents the switch.

Table 1.10: SW Panel only)	/2 BMC Reset/Platform Reset (available on the Front
SW2 (top)	BMC Reset
SW2 (bottom)	Platform Reset

Table 1.11: SW3 SATA	Port 1 Channel Setting	
	On-Board	
Default	On	ON
	RTM	
	Off	ON

SW3 selects the routing of SATA port 1 channel to either the onboard HDD socket or the RTM.

Table 1.12: SW4 BMC Firmware Programming/Console Setting BMC to Console Off On Off On Off Off BMC Firmware Programmable On Off On Off On On On Off On Off On On On Off On Off On On

COM3 on the RIO-3392MIL RTM is connected to the BMC. The BMC firmware can be re-programmed by setting SW4 to "BMC Firmware Programmable" mode. For BMC OOB (out-of-band) support, the default setting of SW4 needs to be resumed.

1.5 Connector Definitions

Table 1.13 lists the function of each connector and Figure 1.2 illustrates connector locations.

Table 1.13: MIC-3392MIL connector descriptions	
Number	Function
VCN1	VGA connector
CN12	USB port 1
CN11	USB port 2
BH1	CMOS battery
CN10	CompactFlash socket
CN4	SATA daughter board connector
CN13	Pre-heat 10W heater pad power connector
SODIMM1	SODIMM socket
J1/J2	Primary CompactPCI bus
J3/J4/J5	Rear I/O transition

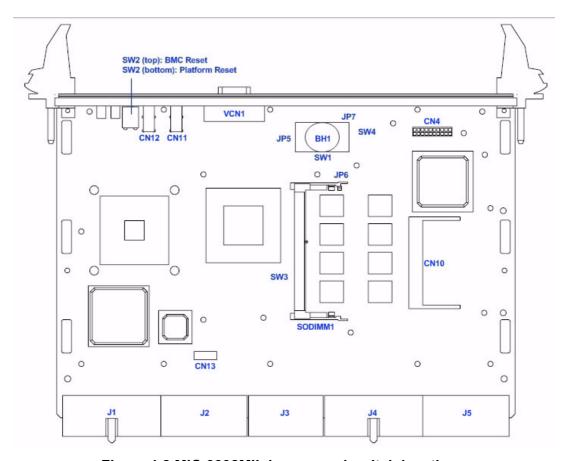


Figure 1.2 MIC-3392MIL jumper and switch locations

Note! VCN1, CN4, CN11, CN12, and SODIMM available on the MIC-3392MILS model only.

1.5.1 VGA Display Connector (VCN1)

The MIC-3392MILS incorporates the Intel 945GME Graphic Memory Controller Hub (GMCH). The Intel Graphics Media Accelerator 950 (Intel GMA 950) graphics core is an intelligent and responsive graphics engine built into the chipset. This integration provides incredible visual quality, faster graphics performance and flexible display options without the need for a separate graphics card. The Intel GMA 950 operates at 256-bit core speeds of up to 400 MHz. The GMA 950 graphics core supports a bandwidth of up to 10.6 GB/sec with up to 224 MB of DDR2 667 video memory. The maximum resolution is 2048 x 1536 at 75 Hz.

The VCN1 connector of MIC-3392MILS provides DB-15 connector for the VGA monitor. The system monitor display is routed to either the front panel or the rear I/O module depending on the position of jumper JP5.

1.5.2 USB Connectors (CN11/12)

The MIC-3392MIL provides up to six Universal Serial Bus (USB) 2.0 channels. Two front panel USB ports, CN11 and CN12, are available on the MIC-3392MILS model. Four other USB channels are routed to rear I/O via the J4 and J5 connectors. The MIC-3392MIL USB interface complies with USB specification R2.0 and is fuse protected (5 V @ 1.1 A). The USB interface can be disabled in the system BIOS setup. The USB controller default is set to "Enabled".

1.5.3 CMOS Battery (BH1)

A 3 V lithium battery will be available on the MIC-3392MILS model. The conduction-cooled model will not have the CMOS battery.

1.5.4 CompactFlash Socket (CN10)

The MIC-3392MIL features an on-board CompactFlash (Type I) mass storage device connector. When populated with a flash disk it appears to the user as an ATA (IDE) disk drive with the same functionality and capabilities as a rotating media IDE hard drive. The MIC-3392MIL BIOS includes an option to allow the board to boot from the flash disk. The CompactFlash socket is connected to the IDE interface and 5 V power. UltraDMA is supported and has been tested on a number of devices from different manufacturers. Please contact your local support office in the unlikely event that you have any interoperability issues.

1.5.5 SATA Daughter Board Connector (CN4)

The MIC-3392MIL provides two SATA interfaces: SATA port 1 via CN4 connects to the onboard SATA HDD or via the J4 connector to a rear I/O board when selected by switch SW3, and SATA port 2 is directly routed to J4.

1.5.6 Pre-heat Heater Pad Power Connector (CN13)

The CN13 connector is to be used specifically by the heater pad in the MIC-3392MILC model. The heater pad, attached to the back side of the conduction-cooled plate, is used to warm up the board during boot up when the ambient temperature reaches below -30° C (-22° F). Approximately 10 watts of electrical power is consumed by the heater pad.

1.6 Safety Precautions

Follow these simple precautions to protect yourself from harm and the products from damage.

- To avoid electric shock, always disconnect the power from your CompactPCI chassis before you work on it. Don't touch any components on the CPU board or other boards while the CompactPCI chassis is powered.
- Disconnect power before making any configuration changes. The sudden rush of power as you connect a jumper or install a board may damage sensitive electronic components.
- Always ground yourself to remove any static charge before you touch your CPU board. Be particularly careful not to touch the chip connectors.
- Modern integrated electronic devices, especially CPUs and memory chips, are extremely sensitive to static electric discharges and fields. Keep the board in its antistatic packaging when it is not installed in the chassis, and place it on a static dissipative mat when you are working with it. Wear a grounding wrist strap for continuous protection.

1.7 Installing CompactFlash in the MIC-3392MILC Model

The CF socket (CN10) for the MIC-3392MILC model is beneath the conduction-cooled plate, therefore installing a CF card on this particular model requires removing the conduction-cooled plate from the PCB first. The following steps illustrate the removal of the plate and the installation of the CF card.

1.7.1 Wedge Locks Removal

Each wedge lock is secured to the conduction-cooled plate by two M2 x .40 screws, which can be accessed on the PCB guide base located on the secondary side of the PCB. There are two wedge locks, two PCB guide bases, and four M2 x .40 screws on the MIC-3392MILC. See Figures 1.3 and 1.4 for illustration.

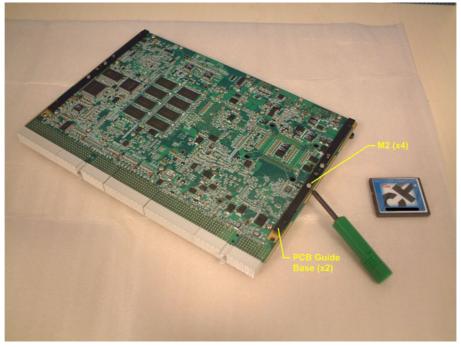


Figure 1.3 Remove the M2 x .40 screws (x4)

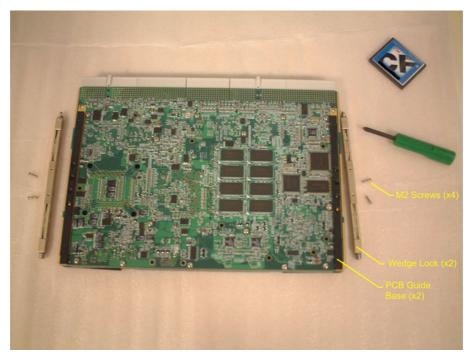


Figure 1.4 Remove the wedge locks from the conduction-cooled plate

1.7.2 PCB Guide Base Removal

Each of the two PCB guide bases is fastened to the conduction-cooled plate by three M2 screws, which can be accessed from the primary side of the board.

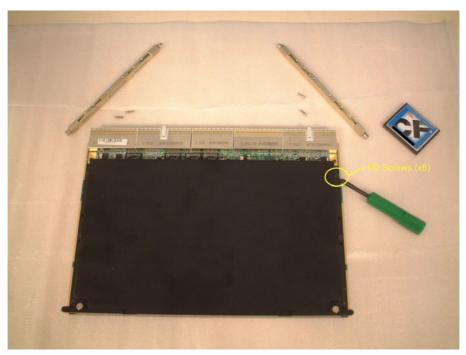


Figure 1.5 Remove the M2 screws for the PCB guide bases

Figure 1.6 Remove the PCB guide bases from the conduction-cooled plate

1.7.3 Conduction-Cooled Plate Removal

To gain access to the CF socket (CN10), the conduction-cooled plate must be removed. There are sixteen M2.5 screws to be removed before the plate can be retrieved. Caution must be taken when taking the plate away from the PCB because the heater pad's power input wire is still connected to connector CN13.

Figure 1.7 Remove the M2.5 screws from the secondary side of the PCB

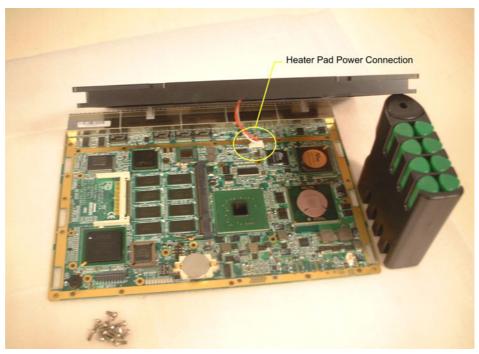


Figure 1.8 Remove the conduction-cooled plate from the board

1.7.4 CF Card Insertion

After the conduction-cooled plate is removed, a CF card (Type-1) can be installed in CN10 as shown below.

Figure 1.9 Insert the CF card in CN10

1.7.5 Reassembling the Conduction-cooled Assembly

After the CF card is installed, the conduction-cooled plate should be re-installed on the PCB. First reattach the heater pad's power input connector to CN13, then reattach the two PCB guide bases. Please note that the PCB guide base must be installed in a specific direction; the "L" step must face the PCB as shown in the following figures. The conduction-cooled plate requires sixteen M2.5 screws, and each PCB guide base needs three M2 screws. The recommended torque values for the M2.5 and M2 screws are 3.0±0.5 kgf·cm and 2.2±0.5 kgf·cm, respectively.

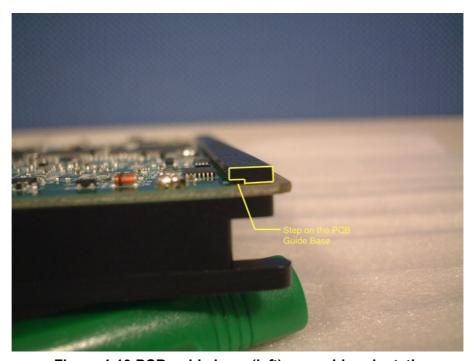


Figure 1.10 PCB guide base (left) assembly orientation

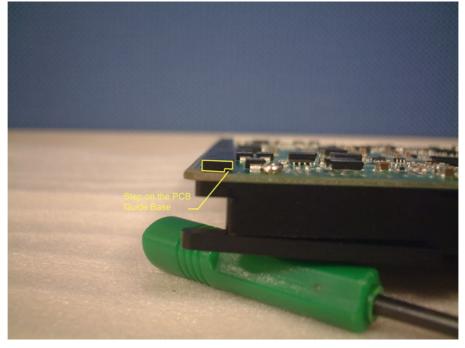


Figure 1.11 PCB guide base (right) assembly orientation

The wedge locks should be reinstalled with a specific orientation to the board so that the conduction-cooled plate and the PCB guide bases interlock with the PCB. The 2.5 mm hexagon socket head cap screw on the wedge lock must face towards the front end of the board. Each wedge lock uses two M2 x .40 screws. The recommended torque value for the M2 screws is 2.2±0.5 kgf·cm.

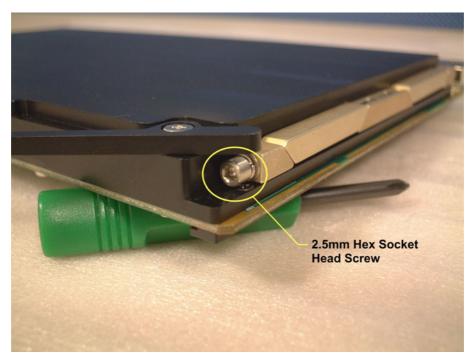


Figure 1.12 Wedge lock hexagon socket head cap screw

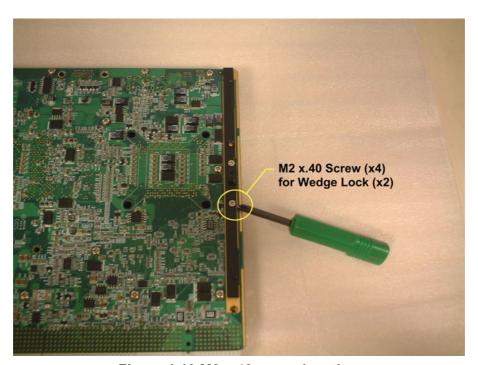


Figure 1.13 M2 x.40 screw locations

Note!

To achieve the proper clamping and retention forces on the cold-plates of a conduction-cooled chassis (VITA30.1 compliant), the recommended torque for the hexagon socket head cap screw on the wedge lock is 8.2 kgf·cm.

1.8 Software Support

Windows XP, Windows 2003, Windows Vista and Fedora Core 5 have been fully tested on the MIC-3392MIL. Please contact your local sales representative for details on support for other operating systems.

Chapter

AMI BIOS Setup

This chapter describes how to configure the AMI BIOS.

2.1 Introduction

The AMI BIOS has been customized and integrated into many industrial and embedded motherboards for over a decade. This section describes the BIOS which has been specifically adapted to the MIC-3392MIL. With the AMI BIOS Setup program, you can modify BIOS settings and control the special features of the MIC-3392MIL. The Setup program uses a number of menus for making changes and turning the special features on or off. This chapter describes the basic navigation of the MIC-3392MIL setup screens.

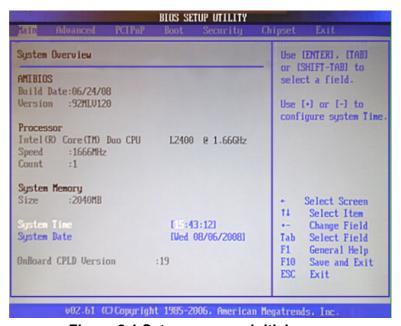


Figure 2.1 Setup program initial screen

The BIOS ROM has a built-in Setup program that allows users to modify the basic system configuration. These settings are stored in battery-backed up CMOS so they are retained when the power is turned off.

2.2 **Entering Setup**

Turn on the computer, and there should be a "patch code" that shows the BIOS details including date, version number, etc. If there is no number assigned to the patch code, please contact an Advantech application engineer to obtain an up-todate patch code file. This will ensure that the CPU's system status is valid. After ensuring that you have a number assigned to the patch code, press and you will immediately be allowed to enter Setup.

Figure 2.2 Sample BIOS patch code

2.3 Main Setup

When you first enter the BIOS Setup Utility, you will enter the Main setup screen. You can always return to the Main setup screen by selecting the Main tab. Two main setup options are described in this section. The main BIOS setup screen is shown below.

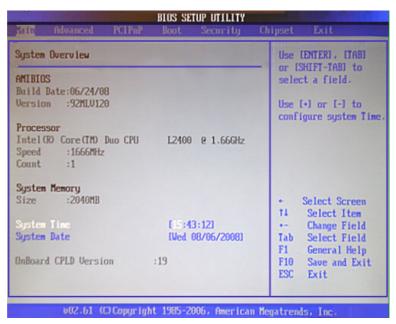


Figure 2.3 Main setup screen

The main BIOS setup menu screen has two main frames. The left frame displays all the options that can be configured. "Grayed-out" options cannot be configured whilst options in blue can. The right frame displays the key legend. Above the key legend is an area reserved for a text message. When an option is selected in the left frame, it is highlighted in white. Often a text message will accompany it.

2.3.1 System Time/System Date

Use this option to change the system time and date. Highlight System Time or System Date using the <Arrow> keys. Enter new values through the keyboard. Press the <Tab> key or the <Arrow> keys to move between fields. The date must be entered in MM/DD/YY format. The time is entered in HH:MM:SS format.

2.4 Advanced BIOS Features Setup

Select the Advanced tab from the MIC-3392MIL setup screen to enter the Advanced BIOS Setup screen. You can select any of the items in the left frame of the screen, such as CPU Configuration, to go to the sub menu for that item. You can display an Advanced BIOS Setup option by highlighting it using the <Arrow> keys. All Advanced BIOS Setup options are described in this section. The Advanced BIOS Setup screen is shown below. The sub menus are described on the following pages.

Figure 2.4 Advanced BIOS features setup screen

2.4.1 CPU Configuration

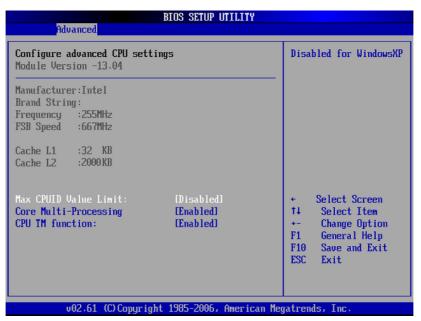


Figure 2.5 CPU configuration

2.4.1.1 Max CPUID Value Limit

It is recommended that you leave this value at the default setting of Disabled.

2.4.1.2 Core Multi-Processing

This item specifies the CPU to perform multi-processing. The default setting for this item is set to "Enabled".

2.4.1.3 CPU TM Function

This item specifies the Thermal Monitor Feature. If set to "Enabled", the BIOS enables the CPU's built-in automatic thermal throttling when the die temperature approaches the processor's temperature limit. If set to "Disabled", the MIC-3392MIL will shut off automatically if the CPU overheats. The default setting is "Enabled".

2.4.2 IDE Configuration

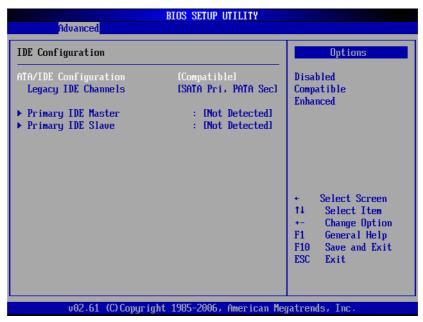


Figure 2.6 IDE configuration

2.4.2.1 ATA/IDE Configuration

Three options are available: Disabled, Compatible, or Enhanced. "Disabled" means that all IDE resources are disabled. "Compatible" enables up to two IDE channels for OSs requiring legacy IDE operation (default setting). And, "Enhanced" enables all SATA and PATA resources.

2.4.2.2 Legacy IDE Channels

Four options are available: "SATA Only", "Reserved", "SATA Pri, PATA Sec", or "PATA Only".

2.4.2.3 Primary IDE Master and Slave

While entering setup, BIOS auto detects the presence of IDE devices. This displays the status of auto detection of the two possible IDE devices.

2.4.3 Floppy Configuration

Figure 2.7 Floppy configuration

■ **Floppy A:** Select the type of floppy drive connected to the system.

2.4.4 Super I/O Configuration

Figure 2.8 Super I/O configuration

- Onboard Floppy Controller: Used to enable or disable the on-board floppy controller (in the Super I/O).
- Floppy Drive Swap: Set this option to "Enabled" to specify that floppy drives A: and B: are swapped. The setting can be "Enabled" or "Disabled".
- Serial Port1 Address: Used to select Serial Port1 base addresses.
- **Serial Port2 Address:** Used to select Serial Port2 base addresses.
- Serial Port2 Mode: Used to select mode for Serial Port2.
- Parallel Port Address: Used to select Parallel Port base addresses.
- Parallel Port Mode: Used to select Parallel Port mode.
- Parallel Port IRQ: Used to select Parallel Port IRQ.

2.4.5 Hardware Health Configuration

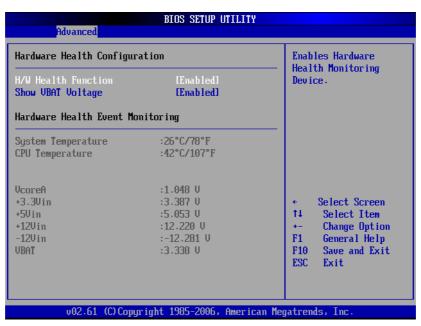


Figure 2.9 Hardware health configuration

- H/W Health Function: Used to enable or disable hardware health event monitoring such as system (ambient) temperature, CPU temperature, CPU Vcore, system 3.3V, 5V, 12V and -12V input voltages, and the on-board 3V CMOS battery voltage level.
- Show VBAT Voltage: Used to enable or disable the reading of the on-board 3V battery voltage level.

Note!

Set **Show VBAT Voltage** to "Disabled" when no CMOS battery is installed on the board.

2.4.6 ACPI Setting

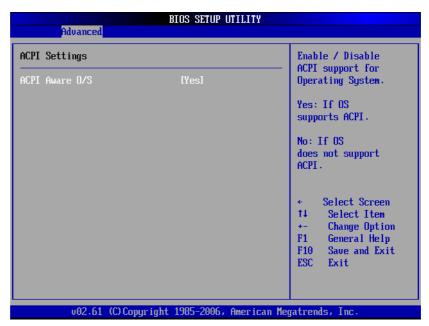


Figure 2.10 ACPI setting

Two types of power management technologies are supported by the MIC-3392MIL: ACPI and APM. ACPI is the newer of the two technologies and puts power management in the hands of the operating system. APM is controlled by the BIOS. Only one power management interface (ACPI or APM) can be in control of the system at a time.

The options for "ACPI Aware O/S" are "Yes" or "No," which either enable or disable ACPI support for the operating system. The default setting is "Yes".

2.4.7 APM Configuration

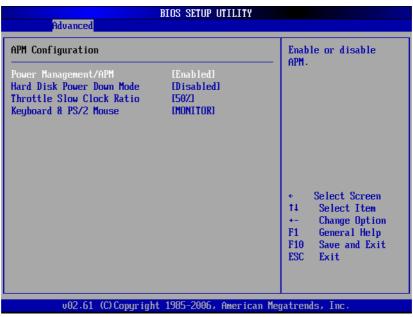


Figure 2.11 APM configuration

APM allows the BIOS to control the system's power management without the knowledge of the operating system. The default setting for "Power Management/APM" is "Enabled".

Note!

When both ACPI and APM modes are enabled at the same time on the BIOS setup, the former power management control will take precedence if the OS supports ACPI mode. In the event that the OS is unaware of ACPI, APM will take control.

- Hard Disk Power Down Mode: Used to power down the hard disk drive in "Suspend" mode. The default setting for this feature is "Disabled".
- Throttle Slow Clock Ratio: Used to select the duty cycle of the CPU in throttle mode. The default setting for this feature is "50%".
- **Keyboard & PS/2 Mouse:** Allows the system to monitor KBC Ports 60/6.

2.4.8 Console Redirection Configuration

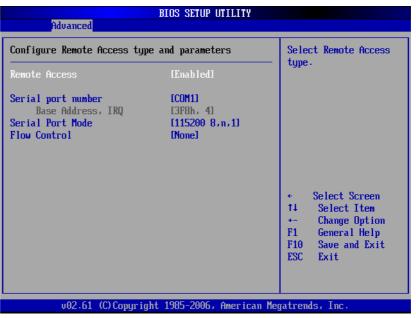


Figure 2.12 Console re-direction configuration

2.4.8.1 Remote Access

You can disable or enable the BIOS remote access feature here. The default setting is "Enabled".

2.4.8.2 Serial Port Number

Select the serial port you want to use for console redirection. You can set the value for this option to either SIO COM1 or COM2. The default setting is SIO COM1.

2.4.8.3 Serial Port Mode

Select the baud rate you want the serial port to use for console redirection. The default setting is 115200 8, n, 1.

2.4.8.4 Flow Control

Select the flow control setting for the console re-direction - "None", "Hardware", and "Software". The default setting is "None".

2.5 PCI/PnP Setup

Select the PCI/PnP tab from the MIC-3392MIL setup screen to enter the Plug and Play BIOS Setup screen. You can display a Plug and Play BIOS Setup option by highlighting it using the <Arrow> keys. All Plug and Play BIOS Setup options are described in this section. The Plug and Play BIOS Setup screen is shown below.

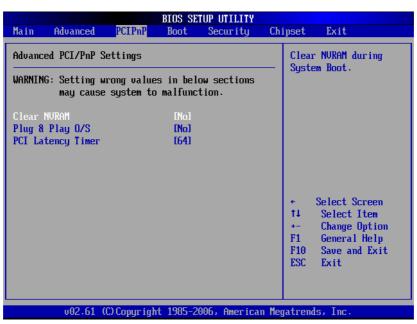


Figure 2.13 PCI/PnP setup

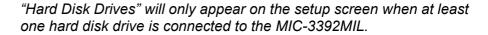
2.5.1 Clear NVRAM

Set this value to force the BIOS to clear the Non-Volatile Random Access Memory (NVRAM). The default setting is "No".

2.5.2 Plug and Play O/S

Set this value to allow the system to modify the settings for Plug and Play operating system support. The default setting is "No".

2.5.3 PCI Latency Timer


This option sets the latency of all PCI devices on the PCI bus. The default setting is

2.6 Boot Setup

Figure 2.14 Boot setup

Note!

2.6.1 Boot Settings Configuration

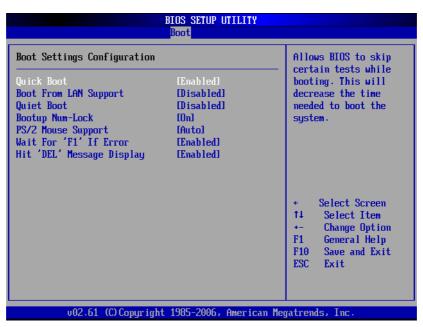


Figure 2.15 Boot settings configuration

- Quick Boot: Allows the BIOS to skip certain tests while booting. This will decrease the time needed to boot the system. The default setting is on "Enabled".
- **Boot From LAN Support:** Used to set the system bootable from LAN. The default setting is on "Disabled".
- Quiet Boot: Used to display OEM logo when the setting is "Enabled". The default setting, "Disabled", displays normal POST messages.
- **Bootup Num-Lock:** On the default setting, "Enabled", the Num-Lock key is enabled during system power on.
- **PS/2 Mouse Support:** Select support for PS/2 mouse "Disabled", "Enabled", and "Auto". The default setting is on "Auto".
- Wait For 'F1' If Error: Wait for the F1 key to be pressed if an error occurs.
- Hit 'DEL' Message Display: Displays "Press DEL to run Setup" in POST.

2.7 Security Setup

Figure 2.16 Password configuration

Select Security Setup from the MIC-3392MIL Setup main BIOS setup menu. All Security Setup options, such as password protection and virus protection, are described in this section. To access the sub menu for the following items, select the item and press <Enter>:

- Change Supervisor Password
- Change User Password
- Clear User Password

2.8 Advanced Chipset Settings

Figure 2.17 Advanced chipset setting

2.8.1 North Bridge Chipset Configuration

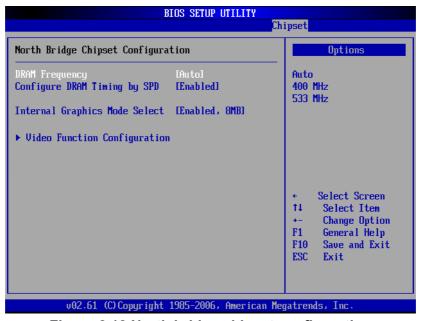


Figure 2.18 North bridge chipset configuration

- **DRAM Frequency:** Available settings are "Auto" (default), "400MHz", "533MHz", and "667MHz".
- Configure DRAM timing by SPD: Available settings are "Enable" (default) and "Disabled".
- Internal Graphics Mode Select: Available settings are "Enabled, 8 MB" (default), "Enabled, 1 MB", and "Disabled".

2.8.1.1 Video Function Configuration

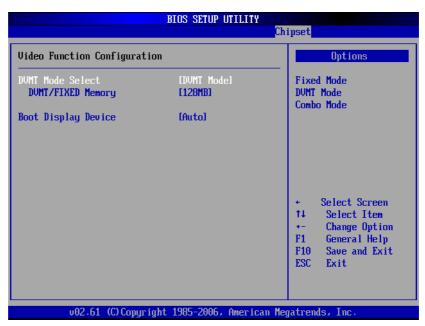


Figure 2.19 Video function configuration

- *DVMT Mode Select:* Available settings are "DVMT Mode" (default), "Fixed Mode", and "Combo Mode".
 - DVMT Mode: the 945GME will dynamically allocate system memory as graphics memory when graphics-intensive applications are running. However, when the need for graphics memory drops, the allocated graphics memory can be released to the operating system for other uses.
 - Fixed Mode: Unlike the DVMT mode, the graphics driver will reserve a fixed portion of the system memory as graphics memory.
 - Combo Mode: the graphics driver will allocate a minimum fixed amount of memory as dedicated graphics memory, as well as allow more system memory to be dynamically allocated between the graphics processor and the operating system.
- **DVMT/Fixed Memory:** Available only to "DVMT Mode and Fixed Mode". Settings are "128 MB" (default), "64 MB", and "Maximum DVMT".
- **Boot Display Device:** Available settings are "Auto" (default), "CRT", "DVI1", and "CRT and DVI1".

2.8.2 South Bridge Chipset Configuration

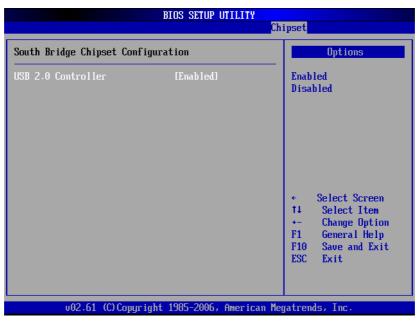


Figure 2.20 South bridge chipset configuration

■ USB 2.0 Controller: Settings are "Enabled" (default) and "Disabled".

2.9 Exit Options

Figure 2.21 Exit options

2.9.1 Save Changes and Exit

When you have completed the system configuration changes, follow these steps:

- 1. Select Exit Saving Changes from the Exit menu and press <Enter>. The following messages appear on the screen:
 - Save Configuration Changes and Exit Now? [Ok] [Cancel]
- 2. Select "Ok" to save changes and exit.

2.9.2 Discard Changes and Exit

Follow these steps to quit Setup without making any permanent changes to the system configuration.

- 1. Select Exit Discarding Changes from the Exit menu and press <Enter>. The following messages appear on the screen:
 - Discard Changes and Exit Setup Now?
 - [Ok] [Cancel]
- 2. Select "Ok" to discard changes and exit. The following message appears on the screen: Discard Changes
- 3. Select "Discard Changes" from the Exit menu and press <Enter>.

2.9.3 Load Defaults

This loads the safe defaults values for the MIC-3392MIL which allows optimum general functionality and system performance, but may not work best for all computer applications.

Select "Load Defaults" from the Exit menu and press <Enter>.

Chapter

Pre-heating for the MIC-3392MILC

This chapter describes how the pre-heat feature works for the MIC-3392MILC.

3.1 Introduction

The pre-heat feature provides an automatic control mechanism for the reliable cold bootup of the MIC-3392MILC. Equipped with a heat pad on the conduction-cooled plate and special BMC firmware for its control, if the ambient board temperature is too low for stable power-on, the preheating circuit powers up the heat pad and keeps the board in reset until the board temperature reaches a safe operating temperature. An alternative pre-heat mode (user configurable) will additionally use the chipset and CPU to generate power dissipation by de-asserting the reset for configurable time intervals.

The cold boot control mechanism is only activated upon board startup and does not perform monitoring during standard board operation.

A thermal sensor (DS1631AU) located between the CPU and the PCI-bridge on the primary side of the board is used to monitor the ambient board temperature during boot-up. The operating range of this thermal sensor is -55° C to 125° C.

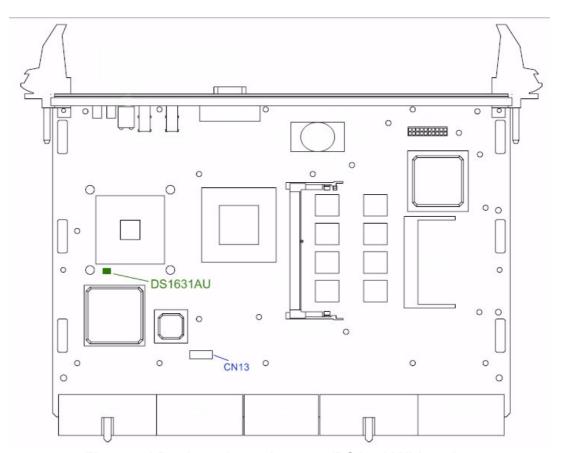


Figure 3.1 Pre-heat thermal sensor (DS1631AU) location

A heater pad (70 mm x 80 mm) attached to the interior side of the conduction-cooled plate is capable of providing approximately 10 watts of thermal power when required. Its power input wire is connected to CN13. It gets a +12 V (with 0.8 A) input from two J5 connector pins. The following figure illustrates the pin definitions of CN13.

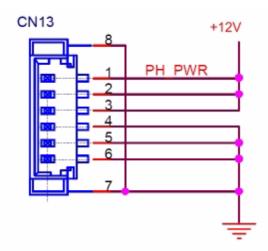


Figure 3.2 Pin definitions of CN13

Note!

More +12 V power to the pre-heat pad can be made available via pins 1 through 3 on CN13, with customized J3 ~ J5 pin definitions and CompactPCI backplane.

3.2 Pre-heat Firmware Operation

The pre-heat code in the firmware will be executed when the board temperature (as measured by DS1631AU) is below a predefined threshold (TEMP_PREHEAT) and the board is powered on. By default, TEMP_PREHEAT is set at -30° C.

The pre-heat code can be configured to operate in one of two different modes by setting the PREHEAT_MODE register to the appropriate value. The modes are Standard Pre-heat, and Extended Pre-heat.

3.2.1 Standard Pre-heat Mode

As a default pre-heat mode, the firmware code will keep the system reset asserted when the payload power is enabled. It will activate the pre-heat circuit by turning on the appropriate GPIO pin and will:

- Constantly monitor if the payload is switched off again -> turn off preheat circuit and return to the firmware code's application main loop.
- Constantly monitor board temperature and de-assert the system reset once the board temperature rises above TEMP_PREHEAT. It shall keep the preheat circuit enabled and keep monitoring the board temperature. The preheat circuit will only be switched off after the temperature rises after a predefined TEMP_PREHEAT + TEMP_HIST.

Note!

TEMP_HIST = Positive temperature hysteresis for preheat circuit deactivation. The default value of the TEMP HIST is 0° C.

3.2.2 Extended Pre-heat Mode

The extended preheat mode will have the same implementation as the standard preheat mode but will add one extra feature:

During the warm up phase, the BMC will repeatedly de-assert the system reset for PREHEAT_TON and then assert it for PREHEAT_TOFF to cause extra power dissipation by CPU and chipset.

Note!

PREHEAT_TON = Time duration [second] of system reset de-assertion in extended pre-heat mode.

PREHEAT_TOFF = Time duration [second] of system reset assertion in extended pre-heat mode.

3.2.3 BMC Communication Interface to the x86 System

The BMC will provide a LPC based communication interface to the x86 system, providing access to internal registers. Some of the register settings will be user configurable defaults which will be stored in the SEEPROM.

The LPC interface will be interrupt based, and the read/write accesses to the internal registers will be carried out within the interrupt handler. If a write access has taken place and the SEEPROM will have to be updated, the interrupt handler will set a global flag to indicate to the application main loop that updated settings will need to be written to the SEEPROM.

The LPC based register interface will consist of an index and data register. The following table shows the internal register map pertaining to the pre-heat function.

.1: Internal register map	for the pre-heat firmware co	ntroller
Description	Direction	Default Value [Hex]
DEVID_MSB Device ID register MSB	read only (FW fixed)	0x33
DEVID_LSB Device ID register LSB	read only (FW fixed)	0x92
FW_REV_MSB FW version register MSB	read only (FW fixed)	xx
FW_REV_LSB FW version register LSB	read only (FW fixed)	xx
REG_SCRATCH Scratch register	read write (static init)	0x00
TEMP_DS1631 DS1613 temp value	read only (dynamic reading)	xx
TEMP_PREHEAT Temperature limit for preheat circuit activation	read write (stored in EEPROM)	0xE2 = -30° C signed 8 bit value (-128 127)
TEMP_HIST Positive hysteresis for preheat circuit deactivation	read write (stored in EEPROM)	0x00 = 0° C
PREHEAT_MODE 0 = standard preheat mode 1 = extended preheat mode	read write (stored in EEPROM)	0x01
PREHEAT_TON Time duration of system reset de-assertion in extended mode (seconds)	read write (stored in EEPROM)	0x05
PREHEAT_TOFF Time duration of system reset assertion in extended mode (seconds)	read write (stored in EEPROM)	0x01
	Description DEVID_MSB Device ID register MSB DEVID_LSB Device ID register LSB FW_REV_MSB FW version register MSB FW_REV_LSB FW version register LSB REG_SCRATCH Scratch register TEMP_DS1631 DS1613 temp value TEMP_PREHEAT Temperature limit for preheat circuit activation TEMP_HIST Positive hysteresis for preheat circuit deactivation PREHEAT_MODE 0 = standard preheat mode 1 = extended preheat mode PREHEAT_TON Time duration of system reset de-assertion in extended mode (seconds) PREHEAT_TOFF Time duration of system reset assertion	DEVID_MSB Device ID register MSB DEVID_LSB Device ID register LSB FW_REV_MSB FW version register MSB FW_REV_LSB FW version register LSB REG_SCRATCH Scratch register TEMP_DS1631 DS1613 temp value TEMP_PREHEAT Temperature limit for preheat circuit activation TEMP_HIST Positive hysteresis for preheat circuit deactivation PREHEAT_MODE 0 = standard preheat mode 1 = extended preheat mode PREHEAT_TON Time duration of system reset de-assertion in extended mode (seconds) PREHEAT_TOFF Time duration of system reset assertion read only (FW fixed) read only (FW fixed)

3.2.4 Read/Write the Internal Registers

The user will need the following items to build the setup as shown in Figure 3.3 in order to gain access to the internal registers for the pre-heat function.

- MIC-3392MILC
- RIO-3392MIL
- CompactPCI chassis (or backplane with at least a system slot) that can accommodate both the MIC-3392MILC and RIO-3392MIL
- CompactPCI power supply
- USB or PS/2 Keyboard
- USB floppy disk drive
- Floppy disk containing MS-DOS and a DOS utility called "debug32.exe"
- A LCD monitor
- A DVI-I cable for display connection between the LCD monitor and the DVI-I port on the RIO-3392MIL

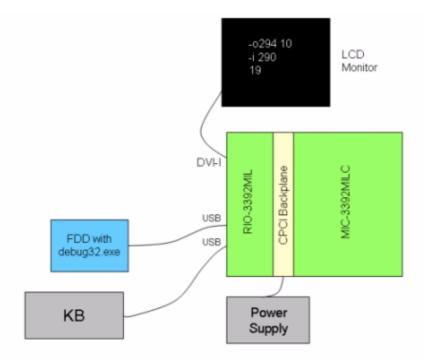


Figure 3.3 Set-up for read/write access to the internal registers

3.2.5 Illustration of Accessing an Internal Register of BMC

- Power up the equipment set-up as shown in Figure 3.3 and boot to DOS.
- Type in "debug32" on the DOS prompt and press <Enter> key (see Figure 3.4).

```
Starting Hindows 98...

Microsoft(R) Hindows 98
(C)Copyright Hicrosoft Corp 1981–1999.

A:>>debug32

Debug32 - Version 1.8 - Copyright (C) Larson Computing 1994

CPU = 686, Real Hode, Id/Step = 86F2, A28 disabled

--
```

Figure 3.4 <Enter> "debug32" utility

3.2.5.1 Read DS1631AU's Temperature Reading (TEMP DS1631)

The index register for the DS1631 thermal sensor's temperature reading is 0x10 (see Table 3.1).

- On the "-" prompt, type in "o 294 10" and press <Enter>
- On the "-" prompt, type in "i 290" and press <Enter>
- The response would be a hex number that represents the current reading of the DS1631AU thermal sensor. For example, "19" represents "25° C".

Note!

"o" represents "writing to" or "locating" a register.

"294 xx" represents "index register xx".

"o 294 xx" represents "locating the index register xx".

"i" represents "reading from" a register.

"290" represents "data register".

"i 290" represents reading the value in the data register of the located index register xx.

3.2.5.2 Modify Temperature Limit for Pre-heat Circuit Activation (TEMP_PREHEAT)

The index register for TEMP_PREHEAT is 0x20 (see Table 3.1). The default value for the pre-heat circuit activation is "E2" (-30° C), which can be modified as follows.

- For example, change the temperature limit from -30° C (E2) to -20° C (EC).
- On the "-" prompt, type in "o 294 20" and press <Enter>
- On the "-" prompt, type in "o 290 ec" and press <Enter>
- On the "-" prompt, type in "o 294 20" and press <Enter>
- On the "-" prompt, type in "i 290" and press <Enter>
- And, the response shown on the display is "ec", representing -20° C.
- At this point, the new setting will be stored automatically in the SEEPROM.

Note!

It is recommended that the data value for TEMP_PREHEAT does not exceed -5° C (FB).

3.2.5.3 Change Pre-heat Mode (PREHEAT_MODE)

The index register for PREHEAT_MODE is 0x30 (see Table 3.1). Its default value is 0x01 (i.e. extended pre-heat mode). To change it to the standard mode (0x00), refer to the following steps.

- On the "-" prompt, type in "o 294 30" and press <Enter>
- On the "-" prompt, type in "o 290 00" and press <Enter>
- On the "-" prompt, type in "o 294 30" and press <Enter>
- On the "-" prompt, type in "i 290" and press <Enter>
- And, the response shown on the display is "00", representing standard pre-heat mode.
- At this point, the new setting will be stored automatically in the SEEPROM.

3.2.5.4 Exit Debug32

Every time a new value is keyed in to a configurable data register, it will be stored automatically in the SEEPROM. The value will not change until it is re-configured by the user again. To exit the pre-heat configuration mode, type in "quit" on the "-"prompt.

3.2.5.5 Temperature Conversion Table

Degrees Celsius	Equivalent Hex Value	Degrees Celsius	Equivalent Hex Value
0	00	1	01
-1	FF	2	02
	FE	3	03
-3	FD	4	04
-2 -3 -4	FC	5	05
-5 -6	FB	6	06
-6	FA	7	07
-7	F9	8	08
-8	F8	9	09
-9	F7	10	0A
-10	F6	11	0B
-11	F5	12	0C
-12	F4	13	0D
-13	F3	14	0E
-14	F2	15	0F
-15	F1	16	10
-16	F0	17	11
-17	EF	18	12
-18	EE	19	13
-19	ED	20	14
-20	EC	21	15
-21	EB	22	16
-22	EA	23	17
-23	E9	24	18
-24	E8	25	19
-25	E7	26	1A
-26	E6	27	1B
-27	E5	28	1C
-28	E4	29	1D
-29	E3	30	1E
-30	E2	31	1F
-31	E1	32	20
-32	E0	33	21
-33	DF	34	22
-34	DE	35	23
-35	DD	36	24
-36	DC	37	25
-37	DB	38	26
-38	DA	39	27
-39	D9	40	28
-40	D8		

Chapter

4

IPMI for the MIC-3392MILS

This chapter describes IPMI configuration for the MIC-3392MILS.

4.1 Introduction

The MIC-3392MILS fully supports the IPMI 2.0 interface and the PICMG 2.9 R1.0 specification. The Renesas H8S/2167 has been implemented as the IPMI controller / Baseboard Management Controller (BMC) to run firmware and collect information. The MIC-3392MILS IPMI firmware is sourced from Avocent, a provider of proven and tested IPMI implementations in a wide range of mission-critical applications. The BMC's key features and functions are listed below.

- Compliant with IPMI specification, revision 2.0
- Compliant with PICMG 2.9 specification
- Environment monitoring (temperature and voltage)
- Power/Reset control via IPMI chassis command
- Complete SEL, SDR and FRU functionality
- FRU data capacity: 2 KB
- Provides 4 messaging interfaces
- One serial port
- One LPC interface
- One IPMB channel
- One LAN channel messaging via sideband NIC for out-of-band management
- Four I2C buses (including IPMB and SMBus) and two optional others
- Firmware Hub flashing and updating over serial port
- One hardware monitor
- One interrupt input
- Sensors threshold configuration
- Complete IPMI watchdog functionality (reset, power down, power cycle)
- Platform even filtering (PEF) and alert policies
- External Event Generation

4.2 **Definitions**

- BMC (Baseboard Management Controller): This is the common abbreviation for an IPMI Baseboard Management Controller.
- IPMB (Intelligent Platform Management Bus): A protocol defined for passing IPMI messages over a public I²C bus.
- IPMI (Intelligent Platform Management Interface): A standardized system management interface. Please refer to the IPMI Specification for more details.
- IPMIv2.0: Specifically version 2.0 of IPMI

4.3 IPMI Function List

The following standard IPMI commands are supported.

Note!

The Network function (NetFn) field identifies the functional class of the message. The Network Function clusters IPMI commands into different sets. Please refer to the IPMI specification of network function codes for more information.

These command codes are compliant with the IPMI specification. Mandatory and Optional commands are defined in the IPMI specification.

For more details, please refer to the IPMI specification.

4.3.1 IPMI Device Global Commands

Table 4.1: Supported IPMI dev	S		
IPMI Device Global Commands	NetFn	Cmd	Mandatory / Optional
Get Device Id	Арр	0x01	M
Cold Reset	Арр	0x02	0
Get Self Test Results	Арр	0x04	М
Manufacturing Test On	Арр	0x05	0
Set ACPI Power State	Арр	0x06	0
Get ACPI Power State	Арр	0x07	0
Get Device GUID	Арр	80x0	0

4.3.2 BMC Device and Messaging Interfaces

The BMC messaging interfaces comply with the Intelligent Platform Management Interface Specification, Version 2.0. The MIC-3392MILS provides 3 messaging interface channels.

- LPC/KCS channel: Connects the H8S/2167 to the system LPC bus. Firmware sets 1 host interface over LPC: KCS for SMS.
- **IPMB channel:** Connects IPMB devices or connects to the H8S/2167's I²C_0 interface.
- **Serial port**: The H8S/2167 supports one serial port for out-of-band management (OOB) as well as one other serial port for firmware flash update.

Table 4.2: H8S I2C bus connection to NIC SMBus				
H8S/2167 Pin Name I ² C address Pin Number System Connection				System Connection
120 4	SCL1	0,406	48	NIC SMBus clock
I ² C_1	SDA1	— 0хС6	47	NIC SMBus data

Table 4.3: NIC interrupt					
H8S/2167 Pin Name	Pin Number	Usage			
IRQ1#	130	SMALERT# for NIC SMBus			

Table 4.4: BMC device and messa	iging co	mmands	
BMC Device and Messaging Commands	NetFn	Cmd	Mandatory / Optional
Set BMC Global Enables	Арр	0x2e	M
Get BMC Global Enables	Арр	0x2f	M
Clear Message Flags	Арр	0x30	M
Get Message Flags	Арр	0x31	M
Enable Message Channel Receive	Арр	0x32	0
Get Message	Арр	0x33	M
Send Message	Арр	0x34	M
Read Event Message Buffer	Арр	0x35	0
Get System GUID	Арр	0x37	0
Get Channel Authentication Capabilities	Арр	0x38	0
Get Session Challenge	Арр	0x39	0
Activate Session	Арр	0x3a	0
Set Session Privilege Level	Арр	0x3b	0
Close Session	Арр	0x3c	0
Get Session Information	Арр	0x3d	0
Get AuthCode	Арр	0x3f	0
Set Channel Access	Арр	0x40	0
Get Channel Access	Арр	0x41	0
Get Channel Info	Арр	0x42	0
Set User Access	Арр	0x43	0
Get User Access	Арр	0x44	0
Set User Name	Арр	0x45	0
Get User Name	Арр	0x46	0
Set User Password	Арр	0x47	0
Master Write-Read	Арр	0x52	M

4.3.3 BMC Watchdog Timer Commands

Table 4.5: BMC watchdog timer commands				
BMC Watchdog Timer Commands	NetFn	Cmd	Mandatory / Optional	
Reset Watchdog Timer	Арр	0x22	M	
Set Watchdog Timer	Арр	0x24	М	
Get Watchdog Timer	Арр	0x24	М	

4.3.4 Chassis Device Commands

Table 4.6: Chassis device commands				
Chassis Device Command	NetFn	Cmd	Mandatory/ Optional	
Get Chassis Capabilities	Chassis	0x00	M	
Get Chassis Status	Chassis	0x01	M	
Chassis Control	Chassis	0x02	M	
Chassis Identify	Chassis	0x04	0	
Set Chassis Capabilities	Chassis	0x05	0	
Get System Restart Cause	Chassis	0x07	0	
Set System Boot Options	Chassis	0x08	0	
Get System Boot Options	Chassis	0x09	0	
Set Front Panel Button Enables	Chassis	0x0a	0	
Set Power Cycle Interval	Chassis	0x0b	0	

4.3.5 Event Commands

Table 4.7: Event commands			
Event Command	NetFn	Cmd	Mandatory/ Optional
Set Event Receiver	S/E	0x00	M
Get Event Receiver	S/E	0x01	М
Platform Event	S/E	0x02	М

4.3.6 PEF and Alerting Commands

Table 4.8: PEF and alerting commands				
PEF and Alerting Command	NetFn	Cmd	Mandatory/ Optional	
Get PEF Capabilities	S/E	0x10	M	
Arm PEF Postpone Timer	S/E	0x11	M	
Set PEF Configuration Parameters	S/E	0x12	M	
Get PEF Configuration Parameters	S/E	0x13	M	
Set Last Processed Event ID	S/E	0x14	M	
Get Last Processed Event ID	S/E	0x15	M	
Alert Immediate	S/E	0x16	0	
PET acknowledge	S/E	0x17	0	

4.3.7 **SEL Device Commands**

Table 4.9: SEL device commands					
SEL Device Command	NetFn	Cmd	Mandatory / Optional		
Get SEL Info	Storage	Storage 0x40	M		
Reserve SEL	Storage	Storage 0x42	0		
Get SEL Entry	Storage	Storage 0x43	M		
Add SEL Entry	Storage	Storage 0x44	M		
Clear SEL	Storage	Storage 0x47	M		
Get SEL Time	Storage	Storage 0x48	M		
Set SEL Time	Storage	Storage 0x49	M		

4.3.8 SDR Device Commands

Table 4.10: SDR device commands				
SDR Device Command	NetFn	Cmd	Mandatory/ Optional	
Get SDR Repository Info	Storage	0x20	M	
Reserve SDR Repository	Storage	0x22	M	
Get SDR	Storage	0x23	M	
Get SDR Repository Time	Storage	0x28	M	
Set SDR Repository Time	Storage	0x29	M	
Run Initialization Agent	Storage	0x2c	0	

4.3.9 FRU Data

The MIC-3392MILS supports the IPMI FRU function to store accessible multiple sets of non-volatile Field Replaceable Unit (FRU) information in FRU EEPROM. The FRU data includes information such as serial number, part number, model, and asset tag. FRU information is accessed using IPMI commands compliant to the IPMI 2.0 specification as below.

Table 4.11: FRU device commands						
FRU Device Command	NetFn	Cmd	Mandatory/ Optional			
Get FRU Inventory Area Info	Storage	0x10	M			
Read FRU Inventory Data	Storage	0x11	M			
Write FRU Inventory Data	Storage	0x12	M			

4.3.10 Sensor and Threshold Configuration

Sensor data record (SDR) repository will be stored in BMC's flash memory and cannot be changed.

Note!

UNC = Upper Non-Critical.

UC = Upper Critical

UNR = Upper Non-Recoverable

LNC = Lower Non-Critical

LC = Lower Critical

LNR = Lower Non-Recoverable

Table 4.12: Sensors list							
Sensor Name	Sensor Number	Sensor Type	Reading Type Sensor	Logged Assertions	Logged De-assertions		
Power Unit	50h	09h	6Fh	00h - Power Off	00h - Power Off		
Status				04h - AC Lost			
	51h	23h	6Fh	00h - Timer Expired, status only			
Watchdog				01h - Hard Reset	⁻ N/A		
			02h - Power Dowi		_		
		03h - Power Cycle					
Power Failure	52h	C0h	6Fh	00h - Power	00h - Power		
	~_	Fa		Failure Failure			
				07h - over 75% full			
SEL Full	64h	D0h	01h	09h - over 90% full	N/A		
				0Bh - 100% full			
System Temperature	20h	01	01h	UC, UNR	UC, UNR		
W83627HG Vcore	10h	02h	01h	LC, UC	LC, UC		
W83627HG +1.5 V	11h	02h	01h	LC, UC	LC, UC		
W83627HG +3.3 V	12h	02h	01h	LC, UC	LC, UC		
W83627HG +12 V	13h	02h	01h	LC, UC	LC, UC		
W83627HG -12 V	14h	02h	01h	LC, UC	LC, UC		
W83627HG +1.8 V	15h	02h	01h	LC, UC	LC, UC		

Note!

A chassis intruder sensor is not used on the MIC-3392MIL platform.

Power failure sensor type "C0h" indicates a power failure event.

Apart from the following list of sensors, other sensors should be reinitialized when the system is powered on or reset.

- VCC
- SEL Fullness
- System PWR monitor
- Watchdog

Table 4.13: Threshold values of sensors							
Sensor Number	10h	11h	12h	13h	14h	15h	20h
Entity Instance	01h	01h	01h	01h	01h	01h	01h
Nominal Reading	1.2 V	1.5 V	3.3 V	12 V	-12 V	1.8 V	30° C
UNR	N/A	N/A	N/A	N/A	N/A	N/A	55° C
UC	1.44 V	1.65 V	3.63 V	13.2 V	-10.8 V	1.98 V	50° C
UNC	N/A	N/A	N/A	N/A	N/A	N/A	N/A
LNR	N/A	N/A	N/A	N/A	N/A	N/A	N/A
LC	0.8 V	1.35 V	2.97 V	10.8 V	-13.2 V	1.62 V	N/A
LNC	N/A	N/A	N/A	N/A	N/A	N/A	N/A
Positive-going	0x02	0x02	0x02	0x02	0x02	0x02	0x02
Negative-going	0x02	0x02	0x02	0x02	0x02	0x02	0x02

Table 4.14: Sensor device commands					
Sensor Device Command	NetFn	Cmd	Mandatory / Optional		
Set Sensor Hysteresis	S/E	0x24	0		
Get Sensor Hysteresis	S/E	0x25	0		
Set Sensor Threshold	S/E	0x26	0		
Get Sensor Threshold	S/E	0x27	0		
Set Sensor Event Enable	S/E	0x28	0		
Get Sensor Event Enable	S/E	0x29	0		
Re-arm Sensor Events	S/E	0x2a	0		
Get Sensor Event Status	S/E	0x2b	0		
Get Sensor Reading	S/E	0x2d	М		

4.3.11 Serial/Modem Device Commands

Table 4.15: Serial Modem device commands							
Serial/Modem Device Command	NetFn	Cmd	Mandatory / Optional				
Set Serial/Modem Configuration Parameters	Transport	0x10	М				
Get Serial/Modem Configuration Parameters	Transport	0x11	М				
Set Serial/Modem Mux	Transport	0x12	М				

4.4 BMC Reset

The BMC can initiate a graceful shutdown of the MIC-3392MILS by issuing a short pulse (~500 ms) on the power button signal to the ACPI controller when commanded through its host, OOB, or IPMB channels as well as from a Graceful Shutdown Event from the CMM or a Handle OPEN event. An ACPI compliant OS will then perform a graceful shutdown and light the blue LED whereas a non-compliant OS will just shut down.

Note!

The Network function (NetFn) field identifies the functional class of the message. The Network Function clusters IPMI commands into different sets. Please refer to the IPMI specification of network function codes for more information.

These command codes are compliant with the IPMI specification.

Mandatory and Optional commands are defined in the IPMI specification.

For more details, please refer to the IPMI specification.

Appendix A

Pin Assignments

This appendix describes pin assignments.

A.1 J1 Connector

Table A.1: J1 CompactPCI I/O								
Pin	Z	Α	В	С	D	E	F	
25	GND	5 V	REQ64#	ENUM#	3.3 V	5 V	GND	
24	GND	AD (1)	5 V	V(I/O)	AD (O)	ACK64#	GND	
23	GND	3.3 V	AD (4)	AD (3)	5 V	AD (2)	GND	
22	GND	AD (7)	GND	3.3 V	AD (6)	AD (5)	GND	
21	GND	3.3 V	AD (9)	AD (8)	M66EN	C/BE (0)#	GND	
20	GND	AD (12)	GND	V(I/O)	AD (11)	AD (10)	GND	
19	GND	3.3 V	AD (15)	AD (14)	GND	AD (13)	GND	
18	GND	SERR#	GND	3.3 V	PAR	C/BE (1)#	GND	
17	GND	3.3 V	IPMB_SCL	IPMB_SDA	GND	PERR#	GND	
16	GND	DEVSEL#	PCIXCAP	V(I/O)	STOP#	LOCK#	GND	
15	GND	3.3V	FRAME#	IRDY#	BD_SEL#	TRDY#	GND	
12-14			KE	Y AREA				
11	GND	AD (18)	AD (17)	AD (16)	GND	C/BE (2)#	GND	
10	GND	AD (21)	GND	3.3 V	AD (20)	AD (19)	GND	
9	GND	C/BE (3)#	IDSEL	AD (23)	GND	AD (22)	GND	
8	GND	AD (26)	GND	V(I/O)	AD (25)	AD (24)	GND	
7	GND	AD (30)	AD (29)	AD (28)	GND	AD (27)	GND	
6	GND	REQ0#	PCI_PRESENT#	3.3 V	CLK0	AD (31)	GND	
5	GND	NC	NC	RST#	GND	GNT0#	GND	
4	GND	IPMB_PWR	Healthy#	V(I/O)	INTP	INTS	GND	
3	GND	INTA#	INTB#	INTC#	5 V	INTD#	GND	
2	GND	TCK	5 V	TMS	TDO	TDI	GND	
1	GND	5 V	-12 V	TRST#	+12V	5V	GND	
Pin	Z	Α	В	С	D	E	F	

Note! NC: No Connect

#: Active Low

A.2 J2 Connector

Tabl	e A.2:	J2 Compa	actPCI I/O				
Pin	Z	Α	В	С	D	E	F
22	GND	GA4	GA3	GA2	GA1	GA0	GND
21	GND	CLK6	GND	NC	NC	NC	GND
20	GND	CLK5	NC	NC	GND	NC	GND
19	GND	NC	GND	SMB_SDA	SMB_SCL	SMB_ALERT#	GND
18	GND	NC	NC	NC	GND	NC	GND
17	GND	NC	GND	PRST#	REQ6#	GNT6#	GND
16	GND	NC	NC	DEG#	GND	NC	GND
15	GND	NC	GND	FAL#	REQ5#	GNT5#	GND
14	GND	AD (35)	AD (34)	AD(33)	GND	AD (32)	GND
13	GND	AD (38)	GND	V (I/O)	AD (37)	AD (36)	GND
12	GND	AD (42)	AD (41)	AD (40)	GND	AD (39)	GND
11	GND	AD (45)	GND	V (I/O)	AD (44)	AD (43)	GND
10	GND	AD (49)	AD (48)	AD (47)	GND	AD (46)	GND
9	GND	AD (52)	GND	V (I/O)	AD (51)	AD (50)	GND
8	GND	AD (56)	AD (55)	AD (54)	GND	AD (53)	GND
7	GND	AD (59)	GND	V (I/O)	AD (58)	AD (57)	GND
6	GND	AD (63)	AD (62)	AD (61)	GND	AD (60)	GND
5	GND	C/BE (5)#	GND/64EN#	V (I/O)	C/BE (4)#	PAR64	GND
4	GND	V (I/O)	NC	C/BE(7)#	GND	C/BE (6)#	GND
3	GND	CLK4	GND	GNT3#	REQ4#	GNT4#	GND
2	GND	CLK2	CLK3	SYSEN#	GNT2#	REQ3#	GND
1	GND	CLK1	GND	REQ1#	GNT1#	REQ2#	GND

Note! NC: No Connect
#: Active Low

A.3 J3 Connector

Table	A.3: J3	CompactP	CI I/O (LAN	I1/LAN2,	, 2.16)		
Pin	F	Α	В	С	D	E	Z
1	GND	RSV	RSV	RSV	RSV	RSV	GND
2	GND	RSV	RSV	RSV	RSV	RSV	GND
3	GND	RSV	RSV	RSV	RSV	RSV	GND
4	GND	RSV	RSV	RSV	RSV	RSV	GND
5	GND	RSV	RSV	RSV	RSV	RSV	GND
6	GND	RSV	RSV	RSV	RSV	RSV	GND
7	GND	RSV	RSV	RSV	RSV	RSV	GND
8	GND	RSV	RSV	RSV	RSV	RSV	GND
9	GND	RSV	RSV	RSV	RSV	RSV	GND
10	GND	RSV	RSV	RSV	RSV	RSV	GND
11	GND	RSV	RSV	RSV	RSV	RSV	GND
12	GND	LAN1_LINK#	LAN1_100#	RSV	LAN2_LINK#	LAN2_100#	GND
13	GND	LAN1_ACT#	LAN1_1000	RSV	LAN2_ACT#	LAN2_1000#	GND
14	GND	RSV	RSV	RSV	RSV	RSV	GND
15	GND	J3_MDIB1+	J3_MDIB1-	GND	J3_MDIB3+	J3_MDIB3-	GND
16	GND	J3_MDIB0+	J3_MDIB0-	GND	J3_MDIB2+	J3_MDIB2-	GND
17	GND	J3_MDIA1+	J3_MDIA1-	GND	J3_MDIA3+	J3_MDIA3-	GND
18	GND	J3_MDIA0+	J3_MDIA0-	GND	J3_MDIA2+	J3_MDIA2-	GND
19	GND	RSV	RSV	RSV	RSV	RSV	GND

Note! NC: No Connect

#: Active Low

A.4 J4 Connector

Tal DV		.4: J4 Compa	actPCI I/O (Aud	lio, LAN3	/LAN4, IDE, S	SATA, USB,	and
J4	F	Α	В	С	D	E	Z
1		USBD4+	A_RIGHTIN	GND	IDE_D8	IDE_RST	GND
2	GND	USBD4-	A_LEFTIN	LAN4 _TX+	IDE_D9	IDE_D7	GND
3	GND	USBD5+	A_MICIN	LAN4 _TX-	IDE_D10	IDE_D6	GND
4	GND	USBD5-	A_CDRIGHT	LAN4 _RX+	IDE_D11	IDE_D5	GND
5	GND	GND	A_CDLEFT	LAN4 _RX-	IDE_D12	IDE_D4	GND
6	GND	NC	CDGND	LAN4 _C+	IDE_D13	IDE_D3	GND
7	GND	NC	A_RIGHTOUT	LAN4 _C-	IDE_D14	HD_D2	GND
8	GND	LVDS_ BL_EN	A_LEFTOUT	LAN4 _D+	IDE_D15	HD_D1	GND
9	GND	LVDS_ PANEL_VDD	NC	LAN4 _D-	NC	HD_D0	GND
10	GND	LVDS_ PANEL_VDD	DVI_1TXC+	LAN4 _ACT	IDE_A2	IDE_IOW	GND
11	GND	LVDS_ BL_CTRL	DVI_1TXC-	LAN4 _LINK	IDE_CS3	IDE_IOR	GND
				KEY AREA			
15	GND	NC/LVDS _TXU3P	DVI_2SENSE	LAN4 _SPEED	GND	IDE_RDY	GND
16	GND	NC/LVDS _TXU3N	DVI_2DATA /LVDS_TXL3P	VCC	SA2_Tx+	IDE_IRQ	GND
17	GND	LVDS _TXU2P	DVI_2CLK /LVDS_TXL3N	SA1 _Tx+	SA2_Tx-	IDE_A1	GND
18	GND	LVDS _TXU2N	DVI_2TX2+ / LVDS_TXL2P	SA1 _Tx-	IDE_P66DET	IDE_A0	GND
19	GND	LVDS _TXU1P	DVI_2TX2- /LVDS_TXL2N	SA1 _Rx+	SA2_Rx+	IDE_CS1	GND
20	GND	LVDS _TXU1N	DVI_2TX1+ / LVDS_TXL1P	SA1 _Rx-	SA2_Rx-	GND	GND
21	GND	LVDS _TXU0P	DVI_2TX1-/ LVDS_TXL1N	J4_DDC _DATA	J4_LAN4_100#	IDE_DRQ	GND
22	GND	LVDS _TXU0N	DVI_2TX0+ /LVDS_TXL0P	J4_DDC _CLK	J4_LAN3_100#	NC	GND
23	GND	LVDS _TXLCKP	DVI_2TX0- /LVDS_TXL0N	DVI -1SENSE	J4_LAN3_100#	IDELED	GND
24	GND	GND	DVI_2TXC+ /LVDS_TXUCKP	DVI -1CLK	LAN3_C+	IDE_DACK	GND
25	GND	LVDS _TXLCKN	DVI_2TXC-/ LVDS_TXUCKN	DVI	LAN3_C-	LAN3_TXD+	GND

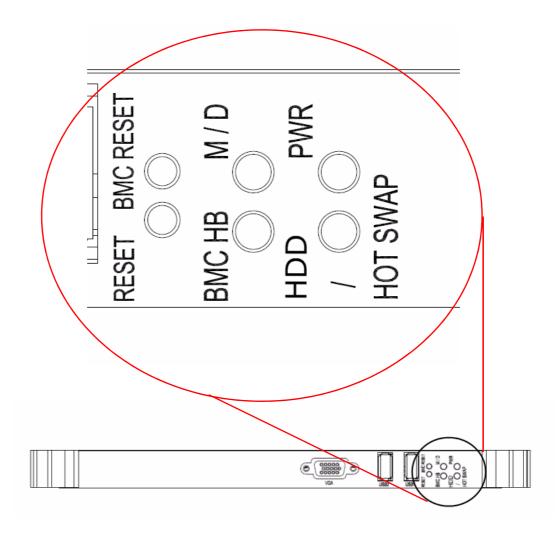
Note! NC: No Connect

A.5 J5 Connector

Tak	ole A.	5: J5 Compa	ctPCI I/O (U	SB, PS2, COM	M, FDD, DV	I, and VGA)	
J5	F	Α	В	С	D	E	Z
1	GND	DVI_1TX0+	DVI_1TX0-	LAN3_LINK#	LAN3_ACT#	LAN3_TXD-	GND
2	GND	DVI_1TX1+	DVI_1TX1-	DDC_CLK#	LAN3_D+	LAN3_RXD+	GND
3	GND	DVI_1TX2+	DVI_1TX2-	DDC_DAT#	LAN3_D-	LAN3_RXD-	GND
4	GND	VGA_VSYN	VGA_HSYN	FDD_HEAD#	GND	NC	GND
5	GND	VGA_BLUE	VGA_GREN	FDD_RDAT#	NC	NC	GND
6	GND	VGA_RED	GND	FDD _WRPT#	NC	NC	GND
7	GND	LPT_SLCT	LPT _D7	FDD _TRK0#	NC	NC	GND
8	GND	LPT _PE	LPT_D6	FDD _WE#	NC	GND	GND
9	GND	LPT _BUSY	LPT _D5	FDD _WDATA#	NC	NC	GND
10	GND	LPT _ACK	LPT _D4	FDD _STEP#	C3_CTS	C3_TXD	GND
11	GND	GND	LPT _D3	FDD _DIR#	C3_RTS	C3_RXD	GND
12	GND	LPT_SLIN#	LPT _D2	FDD _MTR0#	NC	NC	GND
13	GND	LPT_INIT#	LPT_D1	FDD _DCHG#	GND	C2_RI	GND
14	GND	LPT_ERROR#	LPT_D0	FDD _DRV0#	C2_DTR	C2_CTS	GND
15	GND	LPT_AFEED#	LPT_STROB#	FDD _INDX#	C2_TXD	C2_RTS	GND
16	GND	VCC	VCC	VCC	C2_RXD	C2_DSR	GND
17	GND	GND	GND	GND	C2_DCD	GND	GND
18	GND	USB2+	USB3+	KB_DATA	C1_DTR	C1_RI	GND
19	GND	USB2-	USB3-	KB_CLK	C1_TXD	C1_CTS	GND
20	GND	+12V_HEAT	VCC	MS_DATA	C1_RXD	C1_RTS	GND
21	GND	+12V_HEAT	GND	MS_CLK	C1_DSR	C1_DCD	GND
22	GND	RST_BUT	Status1	NC/PWR- GOOD#	Status2	+VBATT_RI O	GND

Note! NC: No Connect
#: Active Low

A.6 Other Connector


Table A.6: C	N4 SATA daughter bo	oard connecto	r
1	GND	2	GND
3	GND	4	SATA_TX0P
5	GND	6	SATA_TX0N
7	GND	8	GND
9	GND	10	SATA_RX0N
11	GND	12	SATA_RX0P
13	GND	14	GND
15	RSV (+3.3 V/+12 V)	16	+5 V
17	RSV (+3.3 V/+12 V)	18	+5 V
19	RSV (+3.3 V/+12 V)	20	+5 V

Appendix B

Pin Assignments

This appendix describes front panel LEDs on the MIC-3392MILS.

B.1 M/D, PWR, BMC HB, and IDE/Hot-swap LEDs

Name	Description
M/D (Green)	Indicates Master or Drone mode status
PWR (Green)	Indicates power status
BMC HB (Yellow)	Indicates BMC status (heart beat to indicate BMC active)
HDD/Hot Swap (Yellow/Blue)	Indicates IDE activity when yellow, or that the board is ready to be hot-swapped when blue.

Appendix C

Programming the Watchdog Timer

This appendix describes how to program the watchdog timer.

C.1 Watchdog Timer Programming Procedure

To program the watchdog timer, you must execute a program that writes a value to I/O port address 443/444 (hex) for Enable/Disable. This output value represents time interval. The value range is from 01 (hex) to FF (hex), and the related time interval is 1 to 255 seconds.

Data	Time Interval
01	1 sec
02	2 sec
03	3 sec
04	4 sec
3F	63 sec

After data entry, your program must refresh the watchdog timer by rewriting the I/O port 443 and 043 (hex) while simultaneously setting it. When you want to disable the watchdog timer, your program should read I/O port 043 (hex). The following example shows how you might program the watchdog timer in BASIC:

```
10 REM Watchdog timer example program
```

20 OUT &H443, data REM Start and restart the watchdog

30 GOSUB 1000 REM Your application task #1,

40 OUT &H443, data REM Reset the timer

50 GOSUB 2000 REM Your application task #2,

60 OUT &H443, data REM Reset the timer

70 X=INP (&H444) REM, Disable the watchdog timer

80 END

1000 REM Subroutine #1, your application task

.

1070 RETURN

2000 REM Subroutine #2, your application task

.

2090 RETURN

Appendix D

CPLD

This appendix describes CPLD configuration.

D.1 Features

Drone Mode

Hot-Swap: Hot insertion and removal control

■ CompactPCI Backplane: CompactPCI slot Addressing

■ LPC Bus: Provide LPC Bus access

■ Watchdog

■ **Debug Message**: Boot time POST message

D.2 CPLD I/O Registers

The Advantech MIC-3392MIL CPLD communicates with four main I/O spaces. The LPC unit is used to interconnect the Intel ICH7M LPC signals. The Debug Port Unit is used to decode POST codes. The Hot-Swap Out-Of-Service LED Control Unit is used to control the blue LED during Hot-Insert and Hot-Remove. The Drone Mode Unit is used to disable the CPCI bridge. The other signals in the Miscellaneous Unit are for interfacing with corresponding I/O interface signals.

Table D.1: LPC I/O registers address					
LPC Address	I/O Type	Description			
0x 80h	R	Debug Message			
0x 443h	W	Watchdog Register (enable)			
0x 444h	R	Watchdog Register (disable)			
0x 445h	R	CPLD version			
0x 447h	R	Geography Address (GA)			

D.2.1 Debug Message

Table	Table D.2: Debug_Code [7:0] (LPC I/O address: 80H)						
Bits	Name	Default State	Valid State	Read Only Function			
7 ~ 0	Debug code	xxh	0 ~ FFh	Show debug code from Port 80h. Bit 7 (MSB)0 (LSB) is mapped to LED70			

D.2.2 Watchdog Register

Table	Table D.3: Watchdog [7:0] (LPC I/O address: 443H)						
Bits	Name	Default State	Valid State	Write Only Function			
7 ~ 0	Watchdog	xxh	1 ~ FFh	Any non-zero value in I/O port 443h enables the watchdog function. The watchdog reset time is 1 ~ 255 seconds (1 second per step).			

D.2.3 Watchdog Disable Register

Table D.4: Watchdog [7:0] (LPC I/O address: 444H)						
Bits	Name	Default State	Valid State	Read Only Function		
7 ~ 0	Watchdog	xxh	xxh	Reading I/O port 444h will disable the watchdog. The return value is meaningless.		

Table	Table D.5: Version [7:0] (LPC I/O address: 445H)						
Bits	Name	Default State	Valid State	Read Only Function			
7 ~ 4	CPLD Version (units)	xxh	xxh	Read I/O port 444h to get the CPLD version in BCD. E.g, for v1.4, the return value is: Bit 7 6 5 4 0 0 0 1			
3 ~ 0	CPLD Version (units)	xxh	xxh	Read I/O port 444h to get the CPLD version in BCD. E.g, for v1.4, the return value is: Bit 4 3 2 1 0 1 0 0			

D.2.4 Geography Address (GA)

This read-only address shows the CPCI backplane slot position.

Table D.6: GA [7:0] (LPC I/O address: 447H)				
Bits	Name	Default State	Valid State	Read Only Function
7 ~ 5	Reserved	Χ	Χ	Bit 7 . Bit 5 are always 111.
4	GA4 (MSB)	Х	0/1	Bit 4 is connected to the J2.A22 pin.
3		Χ	0/1	Bit 3 is connected to the J2.B22 pin.
2		Χ	0/1	Bit 2 is connected to the J2.C22 pin.
1		Χ	0/1	Bit 1 is connected to the J2.D22 pin.
0		Х	0/1	Bit 0 is connected to the J2.E22 pin.

Appendix **E**

Glossary

ACPI Advanced Configuration and Power Interface

APM Advanced Power Management
BMC Baseboard Management Controller

CF CompactFlash

CMOS Complementary Metal-Oxide-Semiconductor

CPU Central Processing Unit

CPCI CompactPCI

DMA Direct Memory Access

DVI Digital Visual Interface-Integrated
DVMT Dynamic Video Memory Technology

FSB Front Side Bus

FRU Field Replaceable Unit

FWH Firmware Hub
GB Gigabyte

GMCH Graphics and Memory Controller Hub

GPIO General Purpose Input/Output

IC Integrated Circuit
ICH I/O Controller Hub

IDE Integrated Drive Electronics

I/O Input/Output

IPMB Intelligent Platform Management Bus/Bridge
IPMI Intelligent Platform Management Interface

KCS Keyboard Controller Style

HDD Hard Disk Drive

LCD Liquid Crystal Display

LPC Low Pin Count LV Low Voltage

MIPS Million Instructions Per Second

OOB Out of Band

OS Operating System
PCB Printed Circuit Board
PEF Platform Event Filtering

PICMG PCI Industrial Computer Manufacturers Group

PnP Plug and Play

PWR Power

RIO Rear Input/Output RTC Real Time Clock

RTM Rear Transition Module

SATA Serial Advanced Technology Attachment

SBC Single Board Computer SDR Sensor Data Record

SEEPROM Serial Electrically Erasable Programmable Read Only Memory

SEL System Event Log
ULV Ultra Low Voltage
VGA Video Graphics Array

www.advantech.com

Please verify specifications before quoting. This guide is intended for reference purposes only.

All product specifications are subject to change without notice.

No part of this publication may be reproduced in any form or by any means, electronic, photocopying, recording or otherwise, without prior written permission of the publisher.

All brand and product names are trademarks or registered trademarks of their respective companies.

© 2010 Advantech Co., Ltd.